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Abstract

In this project, we seek to further develop the method of Hamiltonian truncation to numer-

ically study the ϕ4 scalar QFT on the lattice. By truncating the infinite Hilbert space to

a finite one, we can approximate the vacuum and low energy states of the theory. Using

this information, we will demonstrate the possibility of interesting physical measurements

achievable through this method that cannot be obtained analytically, such as an estimate of

the critical coupling in the continuum limit. We will then compare our results with other

implementations of Hamiltonian truncation as well as other numerical approaches with the

same goal.
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Chapter 1

Introductory Material

1.1 Introduction

Quantum field theory (QFT) gives us the most comprehensive and detailed understanding

of fundamental physics that is currently possible. It has led humanity to the most detailed

agreement of theory and experiment ever achieved, through its implementation in quantum

electrodynamics, or QED [2]. However, this success is due in part to the weakly interacting

nature of QED; that is, the particles involved in the theory do not interact with each other

very strongly [3]. Feynman and Schwinger taught us to exploit this weak coupling by cal-

culating quantities of interest by means of a perturbative expansion in the small coupling

parameter α, the fine structure constant [4, 5]. But once we compare to the strongly coupled

theory of nuclear physics described by quantum chromodynamics (QCD), the relevant cou-

pling constant is very large at energy scales we would like to study, and we can no longer use

the same perturbative methods with success [3]. With QCD in particular, it is the behavior

over large distances where our understanding breaks down, while at short distances we have

asymptotic freedom [6]. In order to better understand these strongly coupled theories, at

least for now, we must resort to approximation methods that give us a precise picture of the

mechanisms at play [7, 8, 9, 10].
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1.2 Background

Hamiltonian truncation is a numerical method to study strongly coupled QFT’s. But more

generally, it is a method that can be applied to any quantum theory with a continuous degree

of freedom. The main goal is to take an unsolvable (infinite dimensional) Hamiltonian of

interest, H, and to find a division of it into an exactly solvable part (H0) and an interacting

part (V ), much like perturbation theory: H = H0 + V . We can use our exactly solvable

H0 to construct a basis for the Hilbert space, and then take a finite subset of that to make

our truncated basis. This gives us a maximum energy cap (the energy of the most energetic

state in our truncated basis). Using that, we construct a truncated representation of our

true H by calculating the matrix elements in the H0 basis, namely Hij = ⟨i|H|j⟩. We can

then diagonalize the matrix, finding the low energy values and wavefunctions.

In this project, we will focus on the scalar ϕ4 theory in (1+1)D (one spatial and temporal

dimension each), as it is a simple example of a strongly coupled theory that has hitherto

avoided a fully analytical solution [11]. It is the hope that will we will be able to apply this

research to more complicated strongly coupled theories (such as QCD) from this jumping-

off point. Previous work already exists that attempted to apply Hamiltonian truncation to

this theory in the continuum [12]. But ultimately, capping the energy scale on a continuum

theory results in UV divergences and non local counter-terms that are hard to avoid.

In response, this work will focus on applying Hamiltonian truncation to a discretized

periodic lattice ϕ4 theory, which sets an energy cutoff of its own due to the lattice spacing.

This is due to the fact that the lattice restricts us from probing distances smaller than the

spacing, which in turn restricts us from probing the larger energies associated with those

short distances. As long as our maximum energy cutoff of the Hilbert space is much greater

than the energy scale associated with the lattice spacing, we can hope to avoid the previous

problems encountered in the continuum. This method to numerically study ϕ4 theory has

not yet been attempted, so that is what we explore in this project.
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Chapter 2

Methodology

Once we have made the transition from the continuum to the lattice, our full ϕ4 theory

Hamiltonian to approximate is

H =
∑
x

[
1

2
˙̂
ϕ2
x +

(ϕ̂x+1 − ϕ̂x)
2

2a2
+

1

2
m2ϕ̂2

x +
λ

4!
ϕ̂4
x

]
, (2.1)

which is a typical lattice field theory Hamiltonian with a first order finite difference coupling

[13]. Here, ϕ̂x is the field operator associated with the lattice site x, a is the lattice spacing,

m is the mass of the particles in the associated free theory, and λ is the coupling constant

that makes the theory unsolvable when not equal to zero. When λ is large, the field ϕ̂ is

strongly coupled to itself, and the particles in the field interact with each other non-trivially.

The sum ranges over L lattice sites.

Our “easy” basis Hamiltonian is

H0 =
∑
x

[
1

2
˙̂
ϕ2
x +

1

2
m2ϕ̂2

x

]
. (2.2)

We coin this the “ultralocal” Hamiltonian.

Before working on the interacting Hamiltonian (2.1), we will apply our method to the
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free Hamiltonian

Hfree =
∑
x

[
1

2
˙̂
ϕ2
x +

(ϕ̂x+1 − ϕ̂x)
2

2a2
+

1

2
m2ϕ̂2

x

]
, (2.3)

to compare the approximations the method yields to the exactly solvable quantities available

in the non-interacting theory.

One may notice that our choice of H0 is essentially the same as that of L independent

uncoupled harmonic oscillators. This choice is intentional. Because of this, our basis states

are simply occupation numbers representing the amount of quanta present in each site:

|N⟩ = |N1, N2, ..., NL⟩ (see Figure 1). We use the bold face N to denote the occupation

number vector with components Nx.

Figure 2.1: Illustration of a typical basis state in the H0 basis. Each lattice site x has an
associated number of quanta, Nx.

We can also express these basis states in terms of creation (â†) and annihilation (â)

operators constructed from the ultralocal Hamiltonian. These are defined as follows, and act

in analogy with the standard harmonic oscillator algebra:

â†x|N⟩ =
√

Nx + 1|N1, ..., Nx + 1, ..., NL⟩ and âx|N⟩ =
√

Nx|N1, ..., Nx − 1, ..., NL⟩ .

(2.4)

We can write our H0 basis states in terms of these operators by defining new operators Â(N )

and Â†(N ):

Â(N ) =
∏
x

âNx
x√
Nx!

and Â†(N ) =
∏
x

(â†x)
Nx

√
Nx!

(2.5)
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which destroy and create the states |N⟩ respectively, i.e. Â†(N )|0⟩ = |N⟩. If we choose the

vacuum |0⟩ to be normalized to one, then these basis states are also normalized to one:

⟨N |N⟩ = ⟨0|Â(N )Â†(N )|0⟩ = 1 (2.6)

This information is enough to construct the matrix elements ⟨N ′|H|N⟩. After doing

so, we will be able to diagonalize the matrix and calculate the eigenvalues, eigenstates, and

therefore other observables and expectation values.

2.1 Calculating the Matrix Elements

To actually compute these elements, we must introduce some more formalism to simplify

the problem. To make the computational process significantly more efficient, we will re-

strict ourselves to the subspace of translationally invariant states on the lattice. Physically,

this means we only consider states consisting of pairs of particles with equal and opposite

momenta. Most notably, the ground state is included in this subspace. We can construct

such a translationally invariant state out of any occupation number vector N by summing

all lattice translations of the state that occupation number represents. Mathematically, our

translationally invariant state |N̄⟩ will be:

|N̄⟩ ∝
∑
ξ

|N ξ⟩ =
∑
ξ

Â†(N ξ)|0⟩ (2.7)

where we sum over all possible translations ξ on the lattice, meaning (Nξ)x = Nx+ξ. We can

also express these states in terms of a translation operator Tξ so that:

|N̄⟩ ∝
∑
ξ

T̂ξÂ
†(N )|0⟩ , where T̂ξÂ

†(N ) = Â†(N ξ) . (2.8)

The normalization of these states depends on the ’symmetry factor’ of N , which we
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denote SN . This factor is simply the number of translations ξ that result in the same

original occupation number vector. With this convention, our normalization is:

|N̄⟩ = 1√
SNL

∑
ξ

T̂ξÂ
†(N )|0⟩ . (2.9)

To make use of this formalism in calculating the desired matrix elements, we must write

the Hamiltonian H completely in terms of the creation and annihilation operators âx and

â†x. This is done through the standard relations

ϕ̂x =
1√
2m

(âx + â†x) and ˆ̇ϕx = −i

√
m

2
(âx − â†x) (2.10)

and through normal ordering, ensuring each term in the Hamiltonian is arranged so all cre-

ation operators are on the left, and all annihilation operators are on the right (see Appendix

A). Completing this process, the free lattice Hamiltonian becomes:

Hfree =
L∑
x

m(â†xâx +
1

2
) +

L∑
x

1

2ma2

[
(â2x + h.c.)− (âxâx+1 + h.c.)

− (â†x+1âx + h.c.) + 2â†xâx + 1

] (2.11)

and the interacting Hamiltonian is:

H =
L∑
x

m(â†xâx +
1

2
)+

L∑
x

[
λ

96m2
(â4x + h.c.) +

8 + λa2

16ma2
(â2x + h.c.)

+
λ

24m2
(â†xâ

3
x + h.c.)− 1

2m

[
(âxâx+1 + h.c.) + (â†x+1âx + h.c.)

]
+

λ

16m2
(â†x)

2(âx)
2 − 8 + λa2

8ma2
â†xâx +

16 + λa2

32ma2

]
.

(2.12)

What we have effectively done is put the Hamiltonians into the form of a linear combi-
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nation of all normal ordered operators, or:

H =
∑
n′,n

hn′,nO(n′,n) , where O(n′,n) =
∏
x

(â†x)
n′
x(âx)

nx (2.13)

where n′,n are occupation number vectors. The problem of finding ⟨N̄ ′|H|N̄⟩ is then

reduced to finding the elements ⟨N̄ ′|O(n′,n)|N̄⟩ for any given n′,n. The full calculation

of this general quantity can be found in Appendix B, but here we will state the answer in

the most computationally helpful form:

⟨N̄ ′|O(n′,n)|N̄⟩ =
√
SN ′SN

L

∏
x

√
(TγN ′

x − n′
x + nx)!

(TγN ′
x − n′

x)!

(TγN ′
x)!

(TγN ′
x − n′

x)!

× θ(TγN
′
x − n′

x)δ(TγN ′
x−n′

x),(TσNx−nx)

(2.14)

The notation for this formula is somewhat non-standard, but it can be understood in terms

of the theta and delta functions in front. The Kronecker delta tells us to first check if there

exists a γ and σ such that the occupation number vectors TγN
′−n′ and TσN−n are equal.

If there are no such γ and σ, the matrix element is zero. The theta function then tells us

that the matrix element is non-zero still only if the vector TγN
′−n′ is greater than or equal

to 0 at each lattice site. If it is, then we plug the shift γ into the remaining part of the

formula and compute the matrix element.

This expression is helpful because it allows us an efficient method to check whether a

given matrix element will be zero, which will be the case the vast majority of the time. We

now have most of the pieces we need; given a basis for H0 ({|N̄⟩}), we can compute the

matrix elements of H in this basis in terms of its normal ordered operators.

2.2 Generating the Basis

But how do we generate our computational basis {|N̄⟩}? This approximation method will

only be viable if our basis is quite large, so how do we create it? There are numerous ways
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to generate random basis states of H0, but our chosen method was to repeatedly act the

Hamiltonian H on the ground state of H0:

{|N⟩} = {Hn|0⟩ || n ∈ N} . (2.15)

Since the Hamiltonian is a linear combination of normal ordered operators of the form

O =
∏
(â†x)

n′(âx)
n′, then it is clear that operators like â†x+1âx or â†x will produce new basis

states. In fact, these operators that create off-diagonal matrix elements ofH are the only ones

we need to consider in creating our H0 basis. In other words, given the division H = H0+V ,

we can rewrite our generated basis as

{|N⟩} = {V n|0⟩ || n ∈ N} , (2.16)

since the action of H0 on a state |N⟩ will not produce any new occupation number vectors.

Of course, this simply gets us a list of occupation number vectors, which we must then turn

into translationally invariant states so we can apply our formulas above.

There are qualitative reasons that support choosing this particular method of basis gen-

eration, since it is related to projecting random states in the Hilbert space onto the ground

state. For example, we can make such a projection by evolving any state through imaginary

time τ . Let {|n⟩} be the eigenbasis for H. For any |N⟩ in the H0 basis, we then have:

e−Hτ |N⟩ = e−Hτ
∑
n

cn|n⟩ =
∑
n

e−Enτcn|n⟩ , (2.17)

and we can see that as τ → ∞, the state |N⟩ is projected onto the ground state, where En

is minimized. But we can also rewrite this projection as:

e−Hτ |N⟩ =
∑
m

(−Hτ)m

m!
|N⟩ . (2.18)
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So by adding the states Hm|N⟩ to our basis, we are potentially creating the necessary states

to achieve the projection onto the ground state.

With all this formalism, we then created a program that automates this process: gen-

erating a truncated basis, calculating the matrix elements of H within that basis, then

diagonalizing that representation of H to find the eigenstates and eigenvalues. This program

was written in the Julia languange.

9



Chapter 3

Results and Discussion

3.1 General Convergence Results

3.1.1 Free Theory Convergence

Before we attempt to use this method on ϕ4 theory, we will first apply it to free theory on

the lattice to test its validity. Our method will still “approximate” the free theory because

we are still using a finite-dimensional basis to approximately span the infinite dimensional

Hilbert space. However, it is useful to test on free theory because we can calculate the error

between our approximation and the true values we wish to approximate. Our residual error

we measure will simply be a percent-error, meaning:

Residual =
Numerical− Theoretical

Theoretical
. (3.1)

We will use the lowest two (translationally invariant) state energies as well as the ⟨ϕ̂2⟩

vacuum expectation value to quantitatively test the convergence. The lowest energy state

will be the ground state (vacuum), and the second lowest energy state will be the state with

two particles going in opposite directions, each with the lowest non-zero momentum possible.

We can see from figure 3.1 that the estimates are certainly converging to their theoretical
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Figure 3.1: Log log plots of the residuals of our three test quantities of interest: the lowest
two energy states on the L = 4, 10 lattices, as well as the vacuum expectation value of ⟨ϕ̂2⟩,
versus the number of states in our computational basis Nstates.

values, but this convergence becomes slower as the lattice size increases. Even more explicitly,

figure 3.2 shows the direct comparison of estimates for different lattice sizes, and how as the

lattice size increases, the convergence rate becomes drastically slower. The largest lattice in

this plot is L = 10, which is not at all large in the realm of lattice field theory simulations.

We can interpolate from this plot that as we keep increasing the lattice size, the slope of the

log residual data will become almost horizontal, rendering this method effectively useless.

Figure 3.2: Log-log plot of the free theory vacuum energy residuals on the L = 4, 7, 10
lattices vs Nstates.
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3.1.2 ϕ4 Theory Convergence

Once we move to ϕ4 theory, the story does not meaningfully change. We can no longer

exactly calculate the residual error, so we instead use a crude estimation. We simply assert

that the jump in accuracy with each increase of Nstates is approximately equal to the total

error before the increase. In other words, if EN is an energy estimate given N states in the

computational basis, EN ′ is a better estimate where N ′ ≫ N , and ∆EN is the actual error

of the first estimate, then we assert:

∆EN ≈ EN − EN ′ . (3.2)

Using this assertion to calculate the residual ground state errors in the same manner as

the free theory case, figure 3.3 illustrates the results for the same three lattice sizes. For this

plot, we picked the coupling parameter λ to be in the non-perturbative regime, specifically

λ/m2 = 3. The same qualitative trend holds; the convergence rate decreases rapidly as

lattice size increases.

Figure 3.3: Log-log plot of the ϕ4 theory (λ/m2 = 3) ground state energy residual estimates
vs Nstates, comparing different lattice sizes L = 4, 7, 10.

12



3.2 Critical Coupling

The previous results seem damning, but there is still a possibility for interesting results to be

made with this method. In particular, we can use the Binder cumulant, named after Austrian

physicist Kurt Binder, to estimate the value of the critical coupling m2

λ
of ϕ4 theory. The

Binder cumulant is useful for identifying critical points of phase transitions [14, 15], thus

also useful for studying ϕ4 theory as it exhibits such a phase transition when the coupling

(λ) of the theory reaches a certain critical value relative to the mass parameter of the theory

(m2) [16]. This is due to spontaneous symmetry breaking in the ground state in the infinite

volume limit.

Figure 3.4: Example plots of a typical use of a Binder cumulant. The cumulant is graphed
across a specific parameter of the theory for many different lattice sizes, and all lattice curves
intersect at the same point [1].

The Binder cumulant UL is defined (in this context) as:

UL

(
m2

λ

)
= 1− 1

3

⟨ ˆ̄ϕ4⟩L
⟨ ˆ̄ϕ2⟩2L

, (3.3)

where it is dependent on two variables, the lattice size L, and the dimensionless coupling

of the theory m2/λ. The expectation values are taken with respect to the vacuum. The

operator ˆ̄ϕ is defined as the average of the field operators ϕ̂x over the lattice. Since the

lattice itself is isotropic, we trivially have ˆ̄ϕ = ϕ̂x for all lattice sites. However, when the

13



averaged field operator is raised to a power it is not so simple, for example:

ˆ̄ϕ2 =

(
1

L

∑
x

ϕ̂x

)2

=
1

L2

[∑
x

1√
2m

(
â†x + âx

)]2

=
1

2mL2

[(∑
x,x′

â†xâ
†
x′ + âxâx′ + 2â†xâx′

)
+ L

]
.

(3.4)

We can calculate the matrix elements, and therefore expectation values, of these operators

with the methods described above.

The Binder cumulant works as follows. We wish to determine the value of the dimen-

sionless coupling m2/λ at which the phase transition occurs in the infinite volume limit. If

we were to plot U∞ against this coupling, we would see it take two different values on either

side of the critical value input, instantaneously switching between the two at the critical

point. We cannot plot this curve as we cannot simulate an infinite lattice. However, we can

plot the curves for various finite lattice sizes, UL. Intuitively, these curves should approach

U∞ as L → ∞.

Figure 3.5: My Binder cumulant plots for ϕ4 theory on the lattice. We plot the cumulant
against the value of λ

m2 for 4 different lattice sizes, and see that they have a common inter-
section point (∼ −0.25).

Furthermore, as Kurt Binder worked out [14], all of the finite L curves must intersect at a

common point. Figure 3.4 illustrates an example of this process for a similar measurement
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in condensed matter physics [1]. Because the curves for all lattice sizes must intersect at a

common point, this common point must be the value of the critical point at which the phase

transition occurs.

This is the procedure that we replicate. In figure 3.5, we plot UL for L = 4, 5, 6, 7, and

find their common intersection point. We find the value of the dimensionless coupling at

this intersection is approximately m2/λ ≈ −0.25. This measurement agrees with [17], where

the same measurement of the dimensionless critical coupling of (1+1)d ϕ4 theory was made

through different means.

This shows that despite the potentially discouraging convergence rates for this implemen-

tation of Hamiltonian truncation, there are still possibilities for interesting measurements to

be made.
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Chapter 4

Conclusions

4.1 Lattice Hamiltonian Truncation: Yay or Nay?

Overall, the interest in this specific project was exploratory. As far as we know, this particular

implementation of Hamiltonian truncation has not yet been attempted, so the goal of this

project was to see how it fared against other implementations, as well as entirely different

methods that accomplish the same task.

Comparing against other implementations of Hamiltonian truncation, we are able to

simulate lattices of greater volumes. The traditional approach of Hamiltonian truncation

does not take place on the lattice, but on the continuum, where the Hilbert space is truncated

with a simple cap on momentum eigenstates of the free continuum theory [12, 18, 19, 20, 21].

In our implementation, the lattice acts as one ”cutoff”, but we also truncate the Hilbert space

in a less trivial way, by creating a computational basis with the ultralocal Hamiltonian and

only using states therein. Ultimately, our method leads to greater potential lattice sizes and

accuracy with comparable computational resources to the traditional methods.

However, both methods suffer heavily from volume scaling issues. Whether we are in

the continuum or on the lattice, the computational cost is exponential in the size of the

lattice. This is qualitatively demonstrated in the lattice method from figures 3.2 and 3.3.
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As the lattice size increases, we need exponentially more basis states to achieve reasonable

accuracy. This is very bad news, since our original goal was to analyze low energy behavior

of strongly coupled theories, like QCD. The way we study this low energy behavior is to

calculate long-distance correlation functions (how stuff over here affects stuff over there),

and since those correlation lengths cannot be larger than the volume, we find an exponential

barrier directly in the way of our goal. The best we can do is to use the changing volume

as a probe of the system, as we have done with the Binder cumulant to estimate the critical

coupling. So it seems that Hamiltonian truncation is still not suited to the needs of studying

strong coupling.

For further comparison and reference, alternative methods of analyzing strongly coupled

theories and the long-distance correlations therein are more successful at overcoming this

barrier. The state-of-the-art method most commonly used to study such theories is called

matrix product states, or tensor network states [22, 23, 24]. In these computational methods,

the computational complexity scales only with the area (or perimeter) of the lattice, not

the volume. This drastically increases the efficiency and accuracy compared to Hamiltonian

truncation. In fact, if the lattice only occupies one spatial dimension, then the computational

complexity is not dependent on the size of the lattice, since the perimeter (the endpoints)

does not change! This is a stark difference from the method tried in this paper, and is clearly

the more efficient choice.
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Appendix A

Normal Ordered Hamiltonian

Here we describe how to ”normal order” the Hamiltonian in terms of the creation and

annihilation operators present in each operator composing it. Normal ordering simply means

rewriting each observable present in the Hamiltonian in terms of the ultralocal creation and

annihilation operators using the relations

ϕ̂x =
1√
2m

(â†x + âx) and
˙̂
ϕx = i

√
m

2
(â†x − âx) , (A.1)

and then using the commutator of the creation and annihilation operators:

[
âx, â

†
y

]
= δxy , (A.2)

to put all of the creation operators on the left of the annihilation operators. The free lattice

Hamiltonian is:

Hfree =
∑
x

[
1

2
˙̂
ϕ2
x +

(ϕ̂x+1 − ϕ̂x)
2

2a2
+

1

2
m2ϕ̂2

x

]
. (A.3)
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To normal order this, we first expand each operator within in terms of the creation and

annihilation operators. We begin with ϕ̂2
x:

ϕ̂2
x =

1

2m
(â†x + âx)

2

=
1

2m

(
(â†x)

2 + (âx)
2 + â†xâx + âxâ

†
x

)
=

1

2m

(
(â†x)

2 + (âx)
2 + 2â†xâx + 1

)
,

(A.4)

where we used the commutator in the last step. Similarly, for the conjugate momentum we

have:

˙̂
ϕ2
x = −m

2

(
(â†x)

2 + (âx)
2 − 2â†xâx − 1

)
. (A.5)

Now we tackle the derivative term. We have:

(
ϕ̂x − ϕ̂x+1

)2
= ϕ̂2

x + ϕ̂2
x+1 − 2ϕ̂xϕ̂x+1 , (A.6)

since operators on different lattice sites commute. We already have expressions for the first

two terms, and we can calculate the final term with:

ϕ̂xϕ̂x+1 =
1

2m
(â†x + âx)(â

†
x+1 + âx+1)

=
1

2m

(
â†xâ

†
x+1 + â†xâx+1 + â†x+1âx + âxâx+1

)
.

(A.7)

So our finite difference derivative term is then:

(
ϕ̂x − ϕ̂x+1

)2
=

1

2m

(
(â†x)

2 + (âx)
2 + 2â†xâx + 1

)
+

1

2m

(
(â†x+1)

2 + (âx+1)
2 + 2â†x+1âx+1 + 1

)
− 1

m

(
â†xâ

†
x+1 + â†xâx+1 + â†x+1âx + âxâx+1

)
.

(A.8)
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Putting this all together into our Hamiltonian, and simplifying, we obtain:

Hfree =
L∑
x

m(â†xâx +
1

2
) +

L∑
x

1

2ma2

[
(â2x + h.c.)− (âxâx+1 + h.c.)

− (â†x+1âx + h.c.) + 2â†xâx + 1

]
.

(A.9)

The same exact techniques can be applied to the ϕ̂4
x operator to compute the normal ordered

Hamiltonian for ϕ4 theory.
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Appendix B

Calculation of Matrix Elements

In this section we calculate the matrix elements ⟨N̄ ′|O(n′,n)|N̄⟩ for any given normal

ordered operator O(n′,n). Expanding this out in terms of our previous definitions, we have:

⟨N̄ ′|O(n′,n)|N̄⟩ = 1

L
√
SN ′SN

∑
ξ′

∑
ξ

⟨0|ÂN ′T̂ξ′O(n′,n)T̂ξÂ
†
N |0⟩ . (B.1)

Let us focus on just the latter portion, expanding the normal ordered operator O:

O(n′,n)T̂ξÂ
†
N |0⟩ =

∏
x

(â†x)
n′
x(âx)

nx
(â†x+ξ)

Nx

√
Nx!

|0⟩

=
∏
x

(â†x)
n′
x(âx)

nx
(â†x)

Nx−ξ√
Nx−ξ!

|0⟩ .
(B.2)

Because annihilation operators send the vacuum to 0, then if nx > Nx−ξ, this expression will

be 0. Therefore, we assume otherwise, but add a step function to account for the possibility.
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In particular,

(âx)
nx
(â†x)

Nx−ξ√
Nx−ξ!

|0⟩ = (âx)
nx|Nx−ξ⟩

= θ(Nx−ξ − nx)

√
Nx−ξ!√

(Nx−ξ − nx)!
|Nx−ξ − nx⟩

= θ(Nx−ξ − nx)

√
Nx−ξ!

(Nx−ξ − nx)!
(â†x)

Nx−ξ−nx |0⟩ .

(B.3)

Inserting this back in to B.2, we have:

O(n′,n)T̂ξÂ
†
N |0⟩ =

∏
x

θ(Nx−ξ − nx)

√
Nx−ξ!

(Nx−ξ − nx)!
(â†x)

Nx−ξ−nx+n′
x|0⟩ . (B.4)

Then, from our definition of Â†
N , we have

Â†
TξN−n+n′ =

∏
x

(â†x)
Nx−ξ−nx+n′

x√
(Nx−ξ − nx + n′

x)!
, (B.5)

and therefore

(∏
x

√
(Nx−ξ − nx + n′

x)!

)
Â†

TξN−n+n′ =
∏
x

(â†x)
Nx−ξ−nx+n′

x . (B.6)

Inserting this into B.4 yields:

O(n′,n)T̂ξÂ
†
N |0⟩ =

[∏
x

θ(Nx−ξ − nx)

√
Nx−ξ! (Nx−ξ − nx + n′

x)!

(Nx−ξ − nx)! (Nx−ξ − nx)!

]
Â†

TξN−n+n′ |0⟩ . (B.7)

We can now plug this back into our original expression in B.1 to get

⟨N̄ ′|O(n′,n)|N̄⟩ = 1

L
√
SN ′SN

∑
ξ

[∏
x

θ(Nx−ξ − nx)

√
Nx−ξ! (Nx−ξ − nx + n′

x)!

(Nx−ξ − nx)! (Nx−ξ − nx)!

]

×
∑
ξ′

⟨0|ÂN ′T̂ξ′Â
†
TξN−n+n′ |0⟩ .

(B.8)
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We now evaluate the bottom sum, considering ξ to be fixed. If a term in the sum is non-zero,

it means that T̂ξ′N
′ = T̂ξN − n + n′, in which case that term will be exactly 1 from the

vacuum normalization. However, if this is true for one such value of ξ′, it must be true for

SN ′ terms in the sum total, since that is how many times N ′ is mapped to itself through

a translation by ξ′. So when the sum is non-zero, it will be equal to SN ′ . This, however,

assumes that there will be such a translation ξ′ that satisfies T̂ξ′N
′ = T̂ξN − n + n′. So we

assume that it does, name it γ, and add a Kronecker delta to check for the possibility. In

particular,

∑
ξ′

⟨0|ÂN ′T̂ξ′Â
†
TξN−n+n′|0⟩ = SN ′δT̂γN ′,T̂ξN−n+n′ = SN ′

∏
x

δN ′
x−γ ,Nx−ξ−nx+n′

x
. (B.9)

This allows us to further simplify our end goal in B.8 to

⟨N̄ ′|O(n′,n)|N̄⟩ = 1

L

√
SN ′

SN

∑
ξ

[∏
x

θ(Nx−ξ − nx)

√
Nx−ξ! (Nx−ξ − nx + n′

x)!

(Nx−ξ − nx)! (Nx−ξ − nx)!

]

×
∏
x

δN ′
x−γ ,Nx−ξ−nx+n′

x
.

(B.10)

But now we can rewrite all terms containing ξ with the Kronecker delta, allowing us to move

everything through the sum over ξ except for the Kronecker delta itself:

⟨N̄ ′|O(n′,n)|N̄⟩ = 1

L

√
SN ′

SN

[∏
x

θ(Nx−γ − n′
x)

√
(N ′

x−γ − n′
x + nx)! (N ′

x−γ)!

(N ′
x−γ − n′

x)! (N
′
x−γ − n′

x)!

×
∑
ξ

δN ′
x−γ ,Nx−ξ−nx+n′

x

]
.

(B.11)

Like before, this final sum is only non-zero when there exists some σ for which T̂γN
′ =

T̂σN − n + n′. If no such σ exists, then the whole matrix element is zero. If it does, then

there will be exactly SN non-zero terms in the sum, all equal to one. So we again assume

there does exist a σ, and edit the Kronecker delta to account for the zero possibility. Our
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whole matrix element then becomes

O(n′,n)N̄ ′
,N̄ =

√
SN ′SN

L

[∏
x

θ(Nx−γ − n′
x)

√
(N ′

x−γ − n′
x + nx)! (N ′

x−γ)!

(N ′
x−γ − n′

x)! (N
′
x−γ − n′

x)!
δN ′

x−γ ,Nx−σ−nx+n′
x

]
,

(B.12)

as stated in equation 2.14. To recap, the theta functions remind us to check for a translation

γ such that for all lattice sites x we have Nx−γ − n′
x ≥ 0, and the Kronecker deltas remind

us to check that there must also be a σ such that for all lattice sites x we have N ′
x−γ =

Nx−σ − nx + n′
x. If these conditions are not met, the matrix element is then 0. This is the

”computationally efficient” way to understand these matrix elements.
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