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We use classical Monte Carlo methods to investigate antiferromagnetic order in the Blume Capel model on a
triangular lattice. We demonstrate that a finite temperature transition to an AFM ordered phase occurs at a Tc

dependent on chemical potential D. This ordered phase is an occupied bipartite honeycomb sublattice of the full
triangular lattice. This is a classical analog of several real-world materials.

INTRODUCTION

Strongly correlated materials exhibit charge and magnetic
ordering, where a relevant question is how geometric frustra-
tion affects them. These systems are described by fermionic
Hamiltonians, which are very difficult to study numerically
and thus it is difficult to determine a mechanism responsible
for the observed charge and spin orders. For those reasons,
in this work we numerically study the classical Blume Capel
(BC) model in a triangular lattice in order to capture the essen-
tial features of a charge and spin ordered system in a geometri-
cally frustrated lattice. We use classical Monte Carlo methods
to investigate both antiferromagnetic and charge order in the
BC model and compare against a previously reported renor-
malization group (RG) calculation. To determine the pres-
ence or absence of each type of order, we construct and uti-
lize novel non-local order parameters that couple to the charge
and spin degrees of freedom. We demonstrate the existence
of an antiferromagnetically ordered and charge ordered phase
in which spins occupy only a honeycomb sublattice of the
full triangular lattice, whose bipartite structure avoids mag-
netic frustration. Although our results are consistent with RG
regarding the location of the finite temperature second- and
first- order phase boundaries from the paramagnetic to mag-
netic phase in the temperature vs chemical potential plane, we
detect a richer phase diagram where charge and magnetic or-
dering occur at different critical temperatures.

A. The Ising Model

The simplest description of magnetic phase transitions is
offered by the Ising model. The Ising model Hamiltonian in
the absence of an external magnetic field [1]

E = J
∑
⟨i j⟩

S iS j (1)

describes the energy of a collection of spins S i = ±1 inter-
acting on a lattice. J is the exchange interaction, and ⟨i, j⟩
indicates a sum over nearest neighbors. This model on the
square planar lattice is exactly analytically solvable through
Onsanger’s method; there is a transition from the paramag-
netic to the ferromagnetic (FM) phase (J < 0) or to the anti-
ferromagnetic (AFM) phase (J > 0) at Tc/|J| = 2.26918.[2].

Figure 1.
The AFM ordered phase on
a bipartite lattice

Figure 2.
Geometric frustration in the
AFM case on a non-bipartite
lattice

The unique AFM ordered phase on the square planar lattice is
possible because the lattice is bipartite, meaning it can be de-
composed into two sublattices such that each site on one sub-
lattice borders only sites on the opposite sublattice; see Fig. 1.
The situation is different for non-bipartite lattices, such as the
triangular planar lattice. There is no way to arrange spins on
each site of a non-bipartite lattice such that each spin only bor-
ders a spin of the opposite value, as is energetically desired in
the AFM case. As such, there is no finite temperataure phase
transition in the Ising model on non-bipartite lattices such as
the triangular planar, as in Fig. 2 [3].

We can resolve this frustration, inducing again a finite tem-
perature phase transition, by introducing a third spin value as
described below.

B. The Blume-Capel Model

In this paper we explore a generalization of the Ising model
that includes vacancies, known as the Blume-Capel model [4,
5] on a triangular lattice. That is, we allow S i = ±1, 0, with
an additional chemical potential D which controls the balance
of vacancies to filled sites:

E = J
∑
⟨i j⟩

S iS j + D
∑

i

S 2
i (2)

The first term has the same interpretation as in the Ising
model. The quantity S 2

i can be interpreted as a local charge
density operator with S 2

i = 1 being a ”charge” at site i and
S 2

i = 0 as a vacancy. We focus on the antiferromagnetic
case, J > 0. The properties of the Blume-Capel model
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are well-determined on the square lattice, which has been
studied with Monte Carlo simulations [6–9], renormalization
group methods [10, 11], and series solution expansions [12].
The phase diagram of this model consists of both a first or-
der discontinous phase transition and a second order con-
tinuous phase transition, with the exact position of the tri-
critical point, at which the two types of transition meet, at
(T/J,D/J) = (0.609(4), 1.965(5)) [13].

Our goal is to explore the less-studied features of the BC
model which appear in the presence of geometric frustration,
specifically focusing on the triangular planar lattice.

We will compare our numerical Monte Carlo method
against Mahan and Girvin [14], who determined the phase
diagram for the antiferromagnetic Blume-Capel model on a
triangular lattice via a real-space renormalization group anal-
ysis. Like the square planar BC results, their phase dia-
gram consists of a second-order transition at low D/J that be-
comes a first-order transition at a tricritical point (T/J,D/J) =
(0.37, 1.5). The major differences are the location of the tri-
critical point at a lower value of both D and T than the square
planar lattice, and the phase boundary crossing (T/J,D/J) =
(0, 0), which is not the case in the square planar.

As an additional check, we compare a limiting case of our
method to a known series solution of the Ising model on a
honeycomb lattice [15].

In studying the BC model, our goal is to gain insight to the
physics of charge and magnetic ordering on a frustrated lat-
tice and provide insights on ordered phases that might arise in
quantum fermionic models with charge and magnetic degrees
of freedom.

METHODS

C. Monte Carlo

We choose to apply a classical Monte Carlo treatment to our
model, Eq. (2). We work separately in the canonical ensemble
(CE), assuming no particle exchange with the reservoir and
thus no change in the number of occupied sites as measured
by S 2

i , and grand canonical ensemble (GCE), allowing particle
exchange and thus a dynamic S 2

i . In the CE the numbers of up,
down, and vacancy sites are fixed to N↑ = N↓ = N0 = N/3,
while in the GCE, no restriction is imposed on the site type
count and the filling fraction is controlled by the parameter D
in the Hamiltonian.

Our Monte Carlo algorithm begins with an initialized state,
with a single spin value assigned to each lattice site. We
choose to initialize the lattice to the AFM preferred phase,
with a vacancy at every third lattice site surrounded by alter-
nating assignments of S i = ±1; then, a change in the state is
proposed. In our GCE Monte Carlo algorithm, for instance,
the change is a random selection of any possible spin state
of a single lattice site. From this change, we calculate a dis-
crete change in energy using Eq. (2). Then, following the
Metropolis-Hastings algortihm, this proposed change is ac-
cepted with a probability weighted by the Boltzmann distri-

bution [1]:

P = min(1, e−β∆E) (3)

Where β = 1
T in units where we take kB = 1. After the

change is either accepted or denied, any quantities of interest,
which are outlined in the following subsection, are measured.
This repeats for a certain number of iterations, and the aver-
age value of each quantity over the course of the Monte Carlo
simulation is calculated.

We perform 100 total simulations of 109 Monte Carlo steps
each on a 15 × 15 periodic lattice, and compute the average
values of selected observables as discussed below.

D. Observables

Monte Carlo treatments in the CE tend to utilize criti-
cal points in the average energy and magnetization, by the
fluctuation-dissipation theorem, to identify the temperature
Tc/J at which a phase transition occurs [1]. However, to at-
tempt to recreate Mahan and Girvin’s RG analysis results, and
probe the full phase space of both Tc and D, I work in the
GCE. Additionally, in order to attempt a distinction between
charge order and magnetic order, we introduce more novel op-
erators.

The filling fraction ⟨n⟩ = ⟨S 2
i ⟩ measures the average frac-

tion of sites on the lattice that are occupied at a given Tc and
D, making it sensitive to charge order but insensitive to mag-
netic order.

In the present BC model in a triangular lattice at 2/3-filling,
an antiferromagnetic pattern in which holes reside in one sub-
lattice (let’s call it s0) and spins up in sublattice s+ and spins
down in sublattice s− (see Fig. 3), a closed loop observable Z,
defined below, will be highly sensitive not only to the confine-
ment/deconfinement of the holes in sublattice s0, but also to
magnetic order:

Z =
∏

i∈s+∪s−

S i (4)

Non-local observables like Z and similar loop observables
in the toric code [16], are usually used to characterize
topological phases of matter in quantum mechanical Hamil-
tonians [17]; however, these can be incorporated in classical
spin models [18], and provide a useful and sharp tool to
characterize the nature of the phase transition. In the AFM
ordered phase, S i when i ∈ s+ ∪ s− will only take the values
{1,−1}. If the chosen sites i over which the product is taken
form a null-homotopic loop– that is, a closed loop that
never fully winds around the 2-torus formed by identifying
opposite edges of the lattice in accordance with our period
boundary condition convention– then Z will return the same
value of Z = −1 regardless of how the loop is stretched or
deformed [19]. As one crosses Tc, this measure should decay
exponentially with loop length, and rapidly approach zero in
the disordered phase.
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Figure 3.
Each of the three coloured sketched loop operators Z will return the
value Z = −1 in the AFM ordered phase.

We can also construct a coordination number operator C,
which is sensitive to just charge, rather than magnetic, order:

C =
1
6

∑
i∈s+∪s−

S 2
i (5)

This will return a value of C = 1 not only in the AFM ordered
phase, but in any honeycomb-lattice phase regardless of the
magnetic order within the honeycomb itself. Thus, the value
of Tc at which the value of C decays can be compared to the
value of Tc obtained from Z in order to determine whether
charge order persists longer than magnetic order.

RESULTS

E. Grand Canonical Ensemble

We compare our GCE results against the upper panel of
Figure 1 of Mahan and Girvin’s RG analysis [14], represented
in Figure 6 of our paper. Their analysis points out that the
preferred AFM ordering has one sublattice occupied with S =
1 spins, another with S = −1 spins, and the third with S = 0;
this is as we predicted as well. They report a first-order phase
transition at above D/J ∼ 1.5 and below T/J ∼ 0.37; we
see this in Figs. 4 and 5 in the sudden jumps in all measured
observables at these coordinates. All observables, regardless
of the type of order they are sensitive to, agree on this set of
points. The second-order phase transitions are more subtle;
to identify them, their derivative with respect to temperature
is taken, smoothed, and analyzed to ensure axis crossing at
T = 0. We focus on locating the maximum on the low-T peak.
The results from three types of non-local operators, plotted
against Mahan and Girvin’s RG analysis results, are shown in
figure 6.
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Figure 4. Filling fraction ⟨n⟩ as a function of D for different tem-
peratures T/J. A (first order) jump from an empty lattice ⟨n⟩ = 0 to
⟨n⟩ = 2/3 occurs with decreasing D for T/J below T/J ∼ 0.37.
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Figure 5. Non-local observables. (a) Coordination number operator.
(b) Loop operator. Dashed (solid) lines correspond to short (long)
loops. (c-d) Derivatives of non-local observables with respect to T .
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Figure 6. T/J vs D/J phase diagram. Open circles correspond to a
digitized version of Ref. [14]. Location of the peak in the derivatives
from Fig. 5 correspond to coordination C (red squares), short loop Zs

(gray triangles) and long loop Zl (blue circles).
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Figure 7. A demostration of sublattice-dependent potential tuning to
recover the honeycomb Ising limit.
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Figure 8. Results in the honeycomb Ising limit for the value of dif-
ferent non-local observables (top panel) and their derivatives with
respect to temperatue (bottom panel). These are obtained with
D±/J = −1000 and setting D0/J = 1000.

F. Sublattice Tuning

By tuning the chemical potential D in Eq. (2) to an ar-
bitrarily large positive value on every third site, and an arbi-
trarily large negative value on all other sites, we recover the
Ising model on a honeycomb lattice as shown in Fig. 7. A The

known series solution for the Ising model on a honeycomb lat-
tice yields Tc/J = 1.51865.. as per Table 1 in Ref. [15]. This
value is significantly larger than the peak Tc in our BC model
phase diagram as the forced honeycomb lattice occupancy is
naturally bipartite, for which an AFM ordered phase is more
energetically favorable and persists longer to higher tempera-
tures. The average of our short loop operator Zs, see Fig. 8,
yields roughly Tc/J = 1.51..; less precise than that obtained
in the series solution but with good agreement. As before, the
long loop operator Zl is much more sensitive to disorder and
results in a lower calculated Tc. Finally, interestingly, the crit-
ical point in the average energy E overshoots the Tc/J value
from the series solution.

I. CONCLUSIONS

In cuprate superconductors, the introduction of holes in a
parent antiferromagnetic state leads to intricate stripe order.
The question of whether one type of order, charge or spin,
drives the other is still under investigation[20].

In this paper we have studied a classical model with similar
qualitative features. Specifically, it allows for the formation of
charge order, a regular pattern of occupied sites on a lattice,
through an explicitly magnetic interaction energy. In our case,
charge order arises through an avoidance of the magnetic frus-
tration present in the fully occupied (Ising model) triangular
lattice. This avoidance is allowed by vacancies occupying one
of three sublattices, leaving occupation on a remaining 2/3 of
the sites forming a bipartite honeycomb geometry. Our mea-
surements support this: the low temperature limit of the filling
fraction ⟨n⟩ is 2/3, and the coordination number operator ⟨C⟩
goes to 1, evidence that only the honeycomb sublattice s+∪ s−
is occupied, and that it is occupied completely. The low tem-
perature limit of ⟨Z⟩, regardless of loop length, is −1 as ex-
pected; so, spins alternate up and down on the honeycomb
sublattice. Interestingly, however, the longer loop operator
breaks down much faster than the short loop or coordination
number. This could be a sign that perfect magnetic ordering
arises only after charge order; however, it is not definitive as
the short loop operator seems to track the coordination num-
ber operator quite closely. Regardless, the triangular lattice
carries rich physics, and is a good candidate for further nu-
merical study with, for instance, quantum mechanical models.
A number of interacting Fermi-systems on a two-dimensional
triangular lattice have been discovered that are linked to su-
perconductivity in experiment; one class of doped cobaltates
have magnetic and charge ordered phases found along with
superconductivity when the material is hydrated [21–23].
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