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Abstract—The work presented was done in a summer REU
program hosted by the University of California, Davis. The goal
is to better understand the single vortex motion of superfluid
helium when the vortex is in a container that has two cylindrical
segments of different diameters, joined by a short sloped portion.

I. INTRODUCTION

There are two types of classical vortices, a free vortex, and
a forced vortex. A forced vortex is when there are external
forces that are acting on a fluid and making the fluid rotate.
All fluid particles move at a constant angular velocity. A free
vortex, which is also known as an irrotational, is formed and
there is no external force or energy that is required to rotate
the fluid. The overall energy flow of a free vortex remains
constant and the fluid particles do not rotate about their own
axis. There are many common examples of free vortices in
nature such as whirlpools and tornadoes.

A superfluid is a rare state when a fluid has zero viscosity
meaning that it has zero resistance to the flow of mass. It is
a quantum effect that only happens at low temperatures. For
instance, Helium-4 is a superfluid at low temperatures, at about
2 Kelvin.

Superfluid vortices differ from classical irrotational vortices
since they are quantized, it simply means that at certain
distances away from the core there are only certain speeds the
fluid can travel. There is some minimum velocity for the fluid
and at all points along the vortex, the fluid must be traveling
an integer multiple of the minimum velocity. For classical
vortices, the vortex dissipates energy, as a result, the fluid flow
slows down and the circulation of the vortex decreases. This
does not happen for a superfluid vortex due to the fact it is
quantized. The superfluid velocity depends on how far away
you are from the core. Therefore, the superfluid that is closer
to the core will move at a higher velocity than the superfluid
that is further from the core. It is important to study the vortex
motion of superfluid helium and learn more about its properties
in hopes to better understand classical vortices and other areas
of physics. To study the single vortex motion of superfluid
helium the velocity field produced from the superfluid helium
vortex must be analyzed.

II. TECHICAL BACKGROUND

Superfluid vortices are irroational vortices, meaning that the
curl of the velocity field (

−→
V ) is equal to zero, ∇ ×

−→
V = 0

(where ∇ = ∂
∂x î+

∂
∂y ĵ +

∂
∂z k̂). This implies that there exists

a velocity potential function ϕ such that
−→
V = ∇ϕ. It is also

true that ∇ ·
−→
V = 0. By using these equations we can derive

Laplace’s Equation.

∇ ·
−→
V = ∇ · (∇ϕ) = ∇2ϕ = 0

Due to the fact that we are specifically looking at superfluid
vortices we can solve for the velocity field of the vortex by
using Laplace’s equation:

∇2ϕ = 0 (1)

where ∇2 is known as the Laplacian Operator and is defined
as ∇2 = ∂2

∂x2 î+
∂2

∂y2 ĵ +
∂2

∂z2 k̂. It is simple to solve Laplace’s
equation for a scalar field as ∇2ϕ = ∇ · ∇ϕ = 0 but
becomes more complicated to solve for a vector field. With
a vector field, each component of the vector field must also
satisfy Laplace’s equation. Hence for a vector field, Laplace’s
equation simplifies to ∇2−→V = ∇2Vxî+∇2Vy ĵ+∇2Vz k̂ = 0.
There are a few important theorems associated with Laplace’s
equation, for example, the Superposition Theorem, which
states that if ϕ1, ϕ2, ϕ3, ... , ϕn are solutions to Laplace’s
equation then ϕ = C1ϕ1 + C2ϕ2 + C3ϕ3 + ... + Cnϕn

(where C1, C2, C3, ..., Cn are defined as constants) is also
a solution. As a result, we can uniquely identify a vector
field (in our case the velocity field of the vortex) by solving
Laplace’s equation with specific boundary conditions. Since
it’s too complicated to solve Laplace’s equation by hand for the
velocity field we used a software called “depSolver” instead.
depSolver is an element boundary solver for Laplace’s equa-
tion in 3D. (More information about depSolver can be found
at https://depsolver.readthedocs.io/en/latest/) To use depSolver
the user must create a mesh, which is usually the surface of
a 3D shape. The desired mesh can be any arbitrary shape
that the user wants, it can be as simple as a cube or any more
complicated shape. depSolver requires very specific input files,
such as, one that creates the desired mesh, one that provides
the boundary conditions that are used to solve Laplace’s
equation, and one that lists all points within the mesh you want
to solve Laplace’s equation at. depSolver produces output files
that describe the value of each component of velocity at all
internal points within the mesh.

III. RESULTS

A. Cylinder with no vortex

We started with a simple case, involving no vortex. We
created a cylinder that is centered on the origin with radius
one and height one. Figure 1 depicts the cylinder mesh used.



Each dot represents a point on the mesh. To keep the system
simple we made the velocity field to be constant and equal
to +5.0 only in the x-direction. Now the y-component and
the z-component of the applied velocity field are both equal
to zero (Vy = 0 and Vz = 0) and the applied velocity field−→
V = Vxî+ Vy ĵ + Vz k̂ can be simplified to

−→
V = Vxî. Hence

the velocity field would flow from the left to right through the
cylinder, this system is unphysical, but we wanted to create an
easy case to ensure that we understood the inputs and outputs
of depSolver properly.

Fig. 1. Cylinder Mesh

After designing the mesh, we had to create the boundary
condition file which involved solving for the perpendicular
component of the velocity at all points along the surface of
the mesh. We are specifically looking at the perpendicular
component of velocity as it must vanish at the wall of the
cylinder. If it doesn’t vanish at the walls of the mesh then
it implies the fluid is flowing through the wall which can’t
physically happen. We find that the perpendicular component
of velocity for all points along the surface of the cylinder
has two components, an x-component and a y-component.
This is because the cylinder is a curved surface. We can
simplify the perpendicular component of the velocity field by
using the geometry of a cylinder: cosθ = x

r , sinθ = y
r , and

r =
√
x2 + y2.

(
−→
V · n̂)n̂ = (Vxcosθ)(cosθî+ sinθĵ)

= Vxcos
2θî+ Vxcosθsinθĵ

= Vx(
x2

x2 + y2
)̂i+ Vx(

xy

x2 + y2
)ĵ

There is no velocity field at the top or bottom base of the
cylinder (when z = 0.0 and z = 1.0) since the field is parallel to
the bases so the z-component of the perpendicular component
is zero. Having solved for the perpendicular component of the
velocity field, we can then create the boundary conditions file
and thus run depSolver. Figures 2 and 3 represent the total
velocity field of the cylinder at specific z-values on the XY

plane. The arrows represent the magnitude and direction of
velocity at each point. Figure 2 is at z=0.5, in the middle

Fig. 2. Velocity field at z = 0.5

Fig. 3. Velocity field at z = 0.8

of the cylinder and Figure 3 is at z=0.8, towards the end of
the cylinder. The fields look very similar to each other but
not identical. We can attribute this due to the fact that z=0.8
is closer to the top and will have slight deviations due to the
effect from the top and how the top of the cylinder is flat.
We would see a similar influence if instead, we were closer
to the base of the cylinder. However, the ends of the cylinder
do not influence the middle of the mesh as it is far enough
away from the ends and that’s the area we are most interested
in so the effect from the bases can be ignored. The velocity



field is tangential to the boundary almost everywhere except
when y = 0.0, at the points (-1.0, 0.0) and (1.0, 0.0). This
can be contributed to the fact that the system we have created
is somewhat unphysical. The field flows perfectly in the x-
direction with a constant magnitude everywhere but within a
closed circular container, the field would be unable to flow
perfectly all in the same direction with constant magnitude.
After ensuring our understanding of depSolver we then moved
on to the more complicated case of placing a vortex within
the mesh.

B. Mesh with vortex

Figure 4 represents the vortices we are putting in the mesh.
The dashed line represents the core of the vortex and then at
some point, in this picture the point is represented by A, the
vortex goes off at a certain angle on the XY plane and hits
the wall of the container. The superfluid is rotating around
the core counterclockwise and is notated by the arrows on the
circles. We have also created a new mesh, the new mesh is

Fig. 4. Vortex Path [1]

composed of two cylinders of two different radii connected
by a short sloped portion. The cylindrical mesh is depicted
in Figure 6. The radius of the smaller cylinder is 0.3, the
radius of the bigger cylinder is 0.6, and the height of the
cell is now 5. We are specifically using this set up because
it is similar to the apparatus that is used in the physical
experiments involving superfluid vortices. Due to the presence
of the vortex calculating the perpendicular component of the
velocity at every point along the mesh becomes more difficult.
I am continuing the previous work of two students and one
of the previous students wrote a program that computes the
perpendicular velocity at all points along the surface of the
mesh and the velocity at all internal points due to the vortex.
The perpendicular component velocity at all internal points
is computed using the Biot-Savart Law and integrating over
the vortex. The perpendicular component of velocity from the

Fig. 5. Cylindrical Mesh

vortex is then used as the boundary conditions in solving for
Laplace’s Equation.

After designing the new mesh we then picked out vortices
that are at about every 30 degrees. Figure 7 depicts the vortex

Fig. 6. Vortex Coordinates

files we worked with. The yellow dots represent exactly every
30 degrees in a circle and the colored lines represent the
vortex files we had. The data points for each vortex file were
taken from vortex simulations done in a perfect cylinder. It
is important to note that all of the vortices are slightly off-
center, the vortex core is located at x = 0.0 and y = 0.009.
This can be seen in Figure 8. All of the vortices end at the
same spot, at z=2.40. This is right before the slanted region,
the slanted region begins at z=2.41. All of the vortices end in



Fig. 7. Close up of Vortex Coordinates

the lower cylinder of the mesh. Figure 9 depicts the vortex

Fig. 8. Vortices going off to hit the wall of the lower cylinder

coordinates of the 120-degree, 150-degree, and 180-degree
vortices from the moment the vortex goes off to hit the wall
of the lower cylinder. By doing every thirty degrees for the
off-center wire we can see how the velocity fields compare to
one each other. The goal is to discover if the velocity fields are
essentially the same just rotated or different from each other.
Since the vortex core is off-center, it isn’t exactly clear how
the velocity fields compare. The vortices are not identical, the
vortices have slightly different lengths. For example, the vortex
at 270-degrees is slightly longer than the vortex located at 90-
degrees. If the vortex core was on center, the vortices would
be identical and the velocity fields for the vortices would be

the same but at different angles.
After selecting the vortex files we were then able to run

depSolver for the different vortices. Figure 10 illustrates the
XY plane of the 120-degree vortex at the height of z= 2.37245
within the mesh. The red vectors represent the perpendicular

Fig. 9. Vortex 120 at Z=2.37245

component of velocity that we solved for at every internal
point within the mesh. The blue vectors represent the total
velocity field formed by the vortex. The total velocity field is
calculated by taking the field we solved for and subtract the
field depSolver solved for. Thus it takes into consideration the
correction of depSolver, to ensure the field vanishes at the wall
of the mesh. Most of the graph is purple because of the overlap
between the red field and the blue field, at those points the
red and blue fields are indistinguishable. Figure 11 represents
the XY plane of the 120-degree vortex, 150-degree vortex,
and 180-degree vortex at the height of z = 2.37245 within
the mesh. The velocity fields at each angle are essentially the
same, purely rotated from one another. Figure 11 illustrates the
120-degree, 150-degree, and 180-degree vortices at z = 3.7179,
in the upper cylinder portion of the mesh. At each point within
the mesh the velocity fields produced from the vortices are
essentially the same, merely at different angles. Similar results
have been reproduced in other trials with different vortices.

IV. CONCLUSION

So now that we have seen that the velocities from vortices
at different angles for an off-center wire are pretty similar
the next step would be to figure out how to properly rotate
one of the velocity fields, let’s say the velocity field at 120-
degrees to 180-degrees and compare again. Another step is
to run trials where instead of having the vortices end in the
lower cylinder have them end in the slanted region or the
upper cylinder. The goal is that hopefully, in the end, we can
build a table of boundary conditions for vortices at different



Fig. 10. Vortices 120, 150, 180 at Z=2.37245

Fig. 11. Vortices 120, 150, 180 at Z=3.7179

angles so that we can use those conditions in the single vortex
simulations. Through these simulations and mimicking what is
done in physical experiments, we can use these computational
results to better understand what is happening in the physical
experiments. This is important so we can study how the
boundary conditions change when the vortices end in different
areas of the mesh, specifically in areas where the diameter
changes.
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