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Abstract
Understanding the physical nature of quantum infor-
mation is critical to develop ways to exploit quantum
systems, either to perform computation or do work.
In particular, the phenomena of entanglement and
decoherence play a central role in many-body quan-
tum dynamics and quantum computation. In this
report, I explain the work I did this summer to help
develop a new formalism we call geometric quantum
mechanics. This work helps demonstrate the power
this formalism has to encode system-environment in-
teractions in the system’s local description. I also ex-
plain work I did to quantify the ways that quantum
measurements extract information from a restricted
class of quantum processes.

Motivation
In the past few decades, work in statistical mechan-
ics, dynamical systems theory, and information the-
ory have revealed that information is a dynamical
quantity that has a fundamental role in physics1–3.
Many classical and thermodynamic phenomena can
be better understood through the lens of information
theory; a pertinent example is the advent of quantum
information science in recent years. This summer, I
explored various ways to extend formalisms from clas-
sical information theory into the quantum domain.

Several quantum information-theoretic theorems
exist that prove bounds on what can’t be done. For
example, the no-cloning theorem tells us that physics
forbids us from duplicating an unknown quantum
state4. On the other hand, the no-hiding theorem
tells us that quantum information that is “lost” due
to decoherence is in fact just dissipated into the larger
environment. Therefore, quantum information is nei-
ther created nor destroyed – it’s a conserved quantity.

However, like energy, it’s a dynamic quantity which
flows in and out of the system in question.

This naturally leads us to the theory of open quan-
tum systems, an area of active research. Central ques-
tions involve understanding the ways in which infor-
mation, entropy, and entanglement (all of which are
intimately related quantities) are stored and trans-
ferred between coupled quantum subsystems5–8. Of
course, isolated quantum systems undergo unitary
evolution under the Schrödinger equation. But when
a system is coupled to an environment, it may evolve
under stochastic dynamics∗. In this general case, we
would like to understand how to probe a quantum
system to extract information about its underlying
dynamics, whether they be unitary or stochastic.

Although much of the prior work has focused
on understanding open systems through the lens of
quantum statistical mechanics, we attempt to take
a different, complementary approach. By rephrasing
this situation in the language of classical probability
theory and dynamical systems theory, we can probe
the same questions using the existing information-
theoretic frameworks available in the classical set-
ting. Unfortunately, it is a nontrivial task to reframe
quantum mechanics in this manner. This summer, I
explored a formalism we call geometric quantum me-
chanics to help accomplish this task.

Another formalism in classical information theory
is known as computational mechanics1,2. To motivate
it, let’s ask a somewhat meta-scientific question: how
do we learn about the natural world? We may probe
dynamical systems with measurement instruments,
extracting information from these systems. From
time-series measurements of dynamical systems, it is
be possible to construct models of the underlying sys-
tem, from which we extract physics9,10. This task lies

∗namely, the Lindblad equation and the quantum Langevin
equations4.
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in the domain of computational mechanics, which it-
self is rooted in information theory. In computational
mechanics, the goal is to construct optimal models
of processes from time series data, and then extract
physics from these optimal models. But when the
process takes on quantum aspects, its information-
theoretic properties may be drastically changed. I
spent some time this summer exploring this.

In this report, I will introduce basic concepts in
information theory, motivate the formalism of geo-
metric quantum mechanics, and explain work I did
to help understand the interplay between the two.

Background

Geometric Quantum Mechanics
In undergraduate quantum mechanics, we learn that
quantum states live in Hilbert space11. In a finite-
dimensional Hilbert space, each coordinate is repre-
sented by complex amplitude. This space of complex
vectors is endowed with an equivalence relation: vec-
tors which are complex multiples of each other cor-
respond to the same physical state. Therefore, the
Hilbert space with dimension n+1 is in fact the com-
plex projective space CPn, which is a Kähler mani-
fold carrying the Fubini-Study metric12,13. Under-
standing these terms is not crucial to this report –
the takeaway is that the manifold of pure states car-
ries a Riemannian structure (which defines a notion
of distance) as well as a symplectic structure (which
defines a notion of dynamic).

For our purposes, we parametrize quantum states
belonging to CPn using 2n real-valued coordinates as
follows. Note that each complex amplitude Zα can
be broken into a magnitude and phase:

Zα =
√
pαe

iφα .

We can perform this decomposition for the n+ 1 co-
ordinates in the Hilbert vector. In fact, the last coor-
dinate is completely determined by the others (up to
the equivalence relation), so in the end we only have
n 2-tuples of real coordinates (pα, φα).

This coordinate transformation has benefits and
drawbacks. The main drawback is that quantum me-

chanics is no longer linear. When performing tra-
ditional quantum mechanical calculations, it is far
more cumbersome to use these geometric coordinates.
However, this coordinate system emphasizes the sym-
plectic nature of the underlying manifold. More
importantly, the volume element under the Fubini-
Study metric in this coordinate system is simply

dVFS = dp1 dφ1 dp2 dφ2 . . . dpn dφn

i.e. the Euclidean volume element. Therefore, it’s
natural to use this coordinate system to describe
probability distributions on CPn.

Why do we want to describe probability distribu-
tions on CPn? Consider an open quantum system S
of dimension n + 1 interacting with an environment
E of finite dimension dE . Then the system’s mixed
density matrix ρS can be decomposed into dE pure
states living in CPn:

ρS =

dE∑
i=1

ai|χi〉〈χi| (1)

where the ai are positive and sum to 1, and the
|χi〉 are pure states in the system’s Hilbert space.
It has recently been shown14 that this decomposi-
tion {ai, |χi〉} can be chosen such that it encodes the
global wavefunction ΨSE :

ΨSE =

dE∑
i=1

√
ai|χi〉|ei〉

This ensemble {ai, |χi〉} is what we call the geometric
quantum state. Since the ai are positive and sum
to 1, we interpret the geometric state as a discrete
probability distribution on CPn. If the system is a
qubit, this amounts to a distribution on the Bloch
sphere.

Since the ensemble encodes the whole wavefunc-
tion, tracking the open dynamics amounts to com-
puting the time evolution of the probability distribu-
tion on only the system Hilbert space. This contrasts
the typical picture, namely computing the trajectory
of a single state in the global Hilbert space.
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Computational Mechanics
Computational mechanics concerns itself with find-
ing and understanding optimal models for physical
processes1,2. Here, “optimal” is defined in a pre-
cise sense: the model should be minimal in size (i.e.
satisfying Occam’s razor) yet maximal in predictive
power. These notions are formalized using informa-
tion theory.

The foundations of information theory are built
upon probability theory15. The central information
measure, the Shannon entropy (often simply referred
to as entropy) of a random variable, is defined as

H(X) =
∑
x∈X

p(x) log

(
1

p(x)

)
where X is the set of all possible outcomes of X and
p(x) is the probability of observing outcome x. Note
that if X represents the microcanonical ensemble of
a system at fixed energy, this information entropy
reduces to the familiar thermodynamic entropy.

The random variable X can be interpreted in a
variety of ways, a fact that underlies the flexibility
and ubiquitous nature of information theory. For our
purposes, it’s helpful to think of X as a single sym-
bol in a time series of a stochastic process. In this
simple view, the complex dynamics of the process is
reduced to the single-symbol statistics of the output
(measured) data.

Many useful information measures rely on compar-
ing two such streams of data X and Y . For example,
it’s natural to ask if there exist correlations between
the two; this is measured using mutual information:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

pX(x)pY (y)

)
where p is the joint probability distribution and pX
and pY are the marginal distributions. Note that the
fraction inside the logarithm roughly measures the
dependence between the two variables X and Y . In-
tuitively, mutual information measures the amount
of information revealed about a process by observing
another. Mutual information is symmetric in its ar-
guments, so each process reveals the same amount of
information about the other.

Another measure which measures dependence is
the conditional entropy:

H(Y |X) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
pX(x)

p(x, y)

)
.

Note that the fraction inside the logarithm is the re-
ciprocal of the conditional probability. This mirrors
the expression for H(X). The conditional entropy is
intimately related to mutual information:

H(X)−H(X|Y ) = I(X;Y ) = H(Y )−H(Y |X)

In addition to these information measures, we need
a way to represent models of physical systems. In
computational mechanics, we typically use hidden
Markov models (HMMs) to represent a process that
can generate a time series of data. An HMM is a
graph whose nodes represent internal states of the
model, and whose directed edges represent transi-
tions between internal states. An example of an
HMM is shown in Figure 1.

The extension of computational mechanics to
quantum systems poses an additional challenge: the
measurement instrument itself will introduce nontriv-
ial dynamics to the system16. Acquiring information
about a quantum system necessarily disrupts the sys-
tem (wavefunction collapse), and the information ac-
quired is probabilistic (with outcomes determined by
the Born rule). Together, these properties imply that
it’s generically not possible to extract all the quan-
tum information from a system.

Figure 1: A Hidden Markov Model. Each transition is la-
belled with a 2-tuple (o, p) where p is the probability of making
that transition and o is the emitted output symbol. Of course,
for each hidden internal state s, the p’s for all outflowing edges
must sum to 1 (conservation of probability).
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Results and Discussion

Visualizing Geometric Quantum States

I began by creating visualizations of geometric quan-
tum states. For qubits (i.e. 2-level quantum sys-
tems), our coordinate system consists of a single
p and a single φ coordinate. Together, they com-
prise a Cartesian plane, restricted to p ∈ [0, 1] and
φ ∈ [0, 2π]. Traditionally, the manifold of pure states
for qubits is represented as the Bloch sphere. The
(p, φ) plane is constructed by slicing the Bloch sphere
along the arc connecting the north and south poles
(|0〉 and |1〉 respectively) and passing through the |+〉
state, and unfurling this “sliced peel” into a plane.
Note that the unfurling causes the north and south
poles to map to the bottom and top edges of the
(p, φ) plane respectively. This one-to-many mapping
reflects the fact that φ is undefined on the poles.

Traditionally, qubit mixed states are visualized as
points within the Bloch ball. By extending the man-
ifold of states from the sphere to the ball, we can
account for mixed states (which extends the family
of all pure states). In the geometric formalism, we in-
stead represent mixed states as probability distribu-
tions on the manifold of pure states. Thus, we don’t
change the underlying manifold; we just extend the
class of distributions from single Dirac deltas (pure
states) to the family of all possible probability dis-
tributions. This approach introduces degeneracies:
multiple distributions can yield the same density ma-
trix. This is by design; it turns out that the “extrane-
ous” information actually encodes information about
the interaction of the system with its environment.

Decades ago, E.T. Jaynes showed that statistical
mechanical distributions obey the Principle of Max-
imum Entropy – they always maximize the informa-
tion entropy of the distribution subject to certain
constraints17. If we apply the same principle to qubit
mixed states, we can derive the geometric quantum
state of highest entropy given a density matrix14.
This max-entropy distribution is a continuous distri-
bution on the system manifold (the Bloch sphere).

I wrote code to represent arbitrary geometric
quantum states (including these maximum-entropy
states). I then wrote code to normalize and visual-

Figure 2: A max-entropy distribution q(Z), constrained to ρ
where ρ00 = 1 − ρ11 = 0.45 and ρ01 = ρ∗10 = 0.2 − 0.3i. The
distribution is represented both on p, φ coordinates (top) and
on the Bloch sphere (bottom, color-coded).

ize these distributions on both the Bloch sphere and
the (p, φ) plane, as shown in Figure 2. I used the
plotly package to generate interactive 3D plots. I
also wrote code to sample pure states from arbitrary
geometric quantum states, using the inverse CDF
method. Since the inverse CDF method relies on
computing marginal distributions, it does not scale
well to Hilbert spaces larger than CP1 (the qubit).

Quantum Dynamics

Sampling from the geometric state allows us to under-
stand qubit isolated dynamics as Hamiltonian flows
in the (p, φ) plane, where the symplectic structure
is evident. Since it can be shown that p and φ
are canonically conjugated variables, the Schödinger
equation in these coordinates takes the form of
Hamilton’s equations. Initially, I focused on the sim-
ple case where the Hamiltonian is time-independent
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Figure 3: The diffusion of a geometric state undergoing
a random walk. The distribution is initially drawn from a
maximum-entropy state constrained to a density matrix ρ and
an effective temperature T .

and the qubit remains coherent. From introductory
quantum mechanics, we know that the qubit will
precess around the Hamiltonian’s eigenvector (Lar-
mor precession)11. By applying this dynamic on
each pure state sampled from the geometric state, we
can visualize the effect of this dynamic on a mixed
state. Unsurprisingly, the geometric state is also pe-
riodic in time and the shape of the distribution is
time-invariant (i.e. the distribution is just translated
around the Bloch sphere).

A slightly more involved toy model simulates a
thermalizing process. The idea is to write a simple
local stochastic equation of motion, for example a
random walk dynamic:

|Ψt+1〉 =
√

1−∆|Ψt〉+
√

∆eiγt |Ψ⊥t 〉

where |Ψ⊥〉 is the unique orthogonal state to |Ψ〉,
∆ � 1 is effectively a step size and γ ∈ [0, 2π] is a
random variable. If γ is unbiased, i.e. chosen from a
uniform distribution, then the overall dynamic on an
ensemble of pure states resembles a diffusion process.
This is shown in Figure 3. We interpret this to be a
toy model of thermalization.

To explore time evolution in the non-coherent case,
I simulated transverse-field Ising model dynamics on

Figure 4: Left: The local geometric state of a qubit interact-
ing with a spin chain under the transverse-field Ising Hamil-
tonian. Each point is a |χi〉 from the decomposition in Equa-
tion 1, and its radius corresponds to its ai. Upper right: The
Bloch vector starts at the north pole |0〉 and evolves towards
the |+〉 direction while also shortening (i.e. becoming more
mixed). Lower right: The max-entropy distribution for the
geometric state. Note that it’s relatively featureless compared
to the geometric ensemble. At first, all the weight is concen-
trated into a single point (i.e. a pure state). As entanglement
increases, the geometric state diffuses through the (p, φ) plane.
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a spin chain with periodic boundary conditions. The
Hamiltonian for this dynamic is

H = −J

(∑
i

σzi σ
z
i+1 + g

∑
i

σxi

)

where σzi is the operator that locally acts on site i
with the Pauli z operator (and likewise for σxi ), J is
the energy scale, and g is the relative strength of the
coupling to the transverse magnetic field compared
to the nearest-neighbor interactions. This model ex-
hibits many interesting properties, including nontriv-
ial entanglement dynamics.

While simulating this dynamic, I chose a single
qubit and constructed its geometric quantum state
as a function of time. As previously mentioned, the
geometric state is a decomposition of the local den-
sity matrix that encodes the global pure state. I con-
ducted small experiments with 10 qubits; taking the
system to be a single qubit leaves 29 dimensions in
the environmental Hilbert space. This means that
the geometric state will consist of 29 Dirac deltas.
As the system evolves over time, the geometric state
also undergoes a time-evolution dynamic, as shown
in Figure 4.

In the limit that the environment size goes to infin-
ity, we conjecture that the geometric state approaches
a continuous distribution. We also conjecture that
probability flows on the reduced system manifold (i.e.
the (p, φ) plane) for geometric state evolution obey a
continuity equation. Further analytical calculations
and numerical simulations are required to validate
these conjectures.

Nonetheless, these numerical experiments demon-
strate that the time evolution of geometric states cap-
ture much richer information than the time evolution
of the local density matrix. The distribution that ex-
actly encodes the information of the density matrix
is the maximum-entropy distribution, which is rel-
atively featureless compared to the geometric state
(compare Figure 2 to Figure 4). In other words,
the maximum-entropy distribution is a sort of coarse-
graining of the detailed geometric state.

Figure 5: The experiment schematic. An HMM generates
quantum states, which are then measured to produce a classical
information. Information measures are calculated between X
and Y .

Information and Quantum Measurement

I also spent a part of this summer exploring the
information-theoretic properties of quantum mea-
surements. To do this, we use a “classically-
controlled qubit process” as a toy model of a quantum
process. This process is effectively a classical hidden
Markov model, with one difference: the emitted sym-
bols are pure qubit states rather than classical bits.

Then, we measure the resulting qubit time-series
using a variety of time-independent measurement
schemes. This produces a time-series of measure-
ments. Finally, we can numerically compute infor-
mation measures comparing the quantum time-series
with the measurement outcomes. A schematic of this
experiment is shown in Figure 5.

The first experiments I conducted involved mea-
suring the time-series using projective measurements.
To perform a projective measurement, one must spec-
ify a basis; on the Bloch sphere, this is equivalent to
picking two antipodal points on the sphere. To sim-
plify the experiment, I restricted the possible mea-
surement bases to the meridian passing through |+〉
on the Bloch sphere. I chose this meridian because
it contains the pure states that are seen in the time-
series (namely |0〉 and |+〉).

I simulated time series of length 400,000 so that
we could minimize statistical noise when computing
information measures. Then, I performed measure-
ments on this time series using 50 different measure-
ment schemes. Information measures as a function of
measurement basis for the quantum biased coin are
shown in Figure 6. Note that the biased coin has no
memory – it’s a single-state process. Therefore, the
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Figure 6: Various information measures for the biased coin
with p = 0.5 (top) and p = 0.3 (bottom), computed as a
function of the measurement basis. The basis is graphically de-
picted as antipodal vectors lying on a cross-section of the Bloch
sphere (where the blue dot represents |0〉 while red represents
|+〉). The blue curve H(x) is the entropy of the quantum
states (independent of the measurement angle as expected).
The orange curve H(y) is the entropy of the measured series.
The green curve H(x|y) is the entropy of the quantum states
conditioned on the measurement, and the red curve H(y|x)
is vice versa. Finally, the purple curve I(x; y) is the mutual
information between the two.

single-symbol information measures distill the effect
of measurement on the process. Note that the mutual
information between quantum states and measured
outcomes is always less than the information entropy
of either series (H(X) and H(Y ) respectively). This
is the result of noncommutativity – in other words,
it’s impossible for a projective measurement to ex-
tract all the information from a process that emits
non-orthogonal states. However, there does exist an
ideal measurement basis (in the sense that mutual in-
formation is maximized), and numerical experiments
show that the ideal basis is dependent on the bias of
the coin.

Finally, I extended these experiments to sup-
port POVMs (positive operator-valued measures).
POVMs are a more general class of measurement
schemes4; they can be thought of as projections onto
a set of non-orthogonal vectors (in the way that pro-
jective measurements are projections onto two or-
thogonal vectors). Of course, quantum mechanics
does not allow non-orthogonal projections; however,
we can still implement POVMs by entangling the
qubit with a larger system and then performing pro-
jective measurement on the larger system. This pro-
cedure, known as Stinespring dilation, has the in-
tended POVM effect on the subsystem4.

The measurement outcomes of POVMs are math-
ematically specified by a set of positive semi-definite
matrices {Ai} which sum to the identity matrix.
Then, given a state |Ψ〉, the probability of measuring
outcome i is

Pr[i] = 〈Ψ|Ai|Ψ〉.

When the {Ai} are projection operators, the POVM
reduces to the familiar projective measurement.

In this experiment, I restricted the POVMs to the
class of POVMs that performs optimally in the task
of unambiguous quantum state discrimination18. The
task is to discriminate two states |ψ〉 and |ϕ〉; the
optimal POVM supports three measurement results:
“definitely |ψ〉”, “definitely |ϕ〉”, and “inconclusive”.

To investigate this situation, I simulated many
POVMs, where |ψ〉 and |ϕ〉 were chosen uniformly
from the same meridian described earlier. The re-
sulting plot is shown in Figure 7. The dashed lines
correspond to POVMs which are physically equiva-
lent to projective measurements. Numerical analysis
indicates that the “peaks” of mutual information oc-
cur in this subspace (see blue circles). In other words,
projective measurements maximize the mutual infor-
mation between the measured time series and the
quantum time series. This suggests that POVMs
may not offer significant advantages over projective
measurements. However, mutual information is only
one information measure; many other measures exist
which probe other aspects, such as memory depen-
dence. Further experiments must be done to investi-
gate whether POVM measurements offer advantages
in extracting information from quantum processes.
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Figure 7: The mutual information between quantum states
and measured outcomes for a biased coin (p = 0.3) using var-
ious POVMs. I use the POVM which unambiguously distin-
guishes two pure states |ϕ〉 and |ψ〉. These states are graphi-
cally depicted on the axes as vectors lying on a cross-section of
the Bloch sphere (where the blue and red dots represents |0〉
and |+〉 respectively). The dashed lines correspond to POVMs
which are effectively equivalent to projective measurements.
The regions of maximal mutual information are circled in blue.

Conclusions and Outlook

Geometric quantum mechanics may offer new insights
into how quantum information is processed, stored,
and transferred between a system and its environ-
ment. Visualizations I developed and numerical anal-
yses I performed have helped make a compelling case
that density matrices alone are insufficient for un-
derstanding the dynamics of quantum information in
interacting systems. Further work remains to under-
stand the trifurcation of the temporal evolution of the
geometric state at early times in the transverse-field
Ising model. We also wish to better understand the
infinite-environment limit, where we conjecture that
the geometric state becomes a continuous distribu-
tion.

I have also performed numerical experiments that
suggest that for classically-controlled qubit processes,
POVMs do not offer an advantage over projective
measurements, at least in the case of mutual infor-

mation (a single-symbol information measure). How-
ever, for quantum processes with memory, it may be
more appropriate to use different information mea-
sures, such as those that are conditioned on the mea-
sured history. This may be addressed in future work.

Much work remains in the quest to understand
quantum information and the role it plays in physics.
This effort may result in technologies which can ex-
ploit quantum information phenomena. Although
many questions remain unanswered in this exciting
field, we hope that the geometric formalism may re-
veal insights previously unseen.
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