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     We investigate the effectiveness of the Inverse Laplace Transform (ILT) analysis of NMR 

magnetization data in obtaining spin-lattice relaxation rate (W1) distributions. The ILT analysis method 

provides an estimation of the probability distribution of W1, which is significant in the study of condensed 

matter systems such as high-temperature superconductors. To observe the effectiveness of the method, we 

compare the probability distributions obtained for spin magnetization recovery curves of spin ½ nuclei 

with a stretched exponential form to analytic solutions of the distributions. For further study of the 

method, parameters such as the number of points and noise for the recovery curves are varied to observe 

their effect on the estimation of the probability distribution. We observe that these parameters contribute 

to unwanted oscillatory behavior in the estimated probability distribution solved using the ILT analysis 

method. 

 

1. Background 

1.1. Nuclear Spin 

     Nuclei with an odd number of protons and neutrons have an intrinsic angular momentum I or 

“spin”, and a corresponding magnetic moment µ. These two quantities are related to each other 

by the gyromagnetic ratio γ, a constant specific to a nucleus’ element and isotope. 

                                                                        µ⃗  =  γI⃑                                                                  (1) 

     When an external magnetic field B is applied, each nucleus in the system will possess some 

potential energy based on its magnetic moment’s orientation in respect to the magnetic field. It is 

standard for the direction of the magnetic field to correspond to the z-axis. 

                                                                 U =  − µ⃗  ∙  B ẑ                                                             (2) 

The potential energy is minimized when the direction of the magnetic moment is aligned with 

the direction of the magnetic field. As a result, the magnetic moments in a system will be 

polarized. The magnetization of a system is a vector quantity that expresses the density of the 

polarized magnetic moments. 

     When there is an angle between the net magnetic moment, the magnetization and the direction 

of the magnetic field, torque is generated.  

                                                                   τ = µ⃗  ×  B ẑ                                                              (3) 

The magnetization vector precesses around the z-axis until it relaxes back to its equilibrium 

position. 
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     The angular frequency of the precession is called the Larmor frequency ωL. Its value is 

dependent on the magnitude of the external magnetic field and the gyromagnetic ratio.  

 

1.2. NMR Measurement 

     Nuclear Magnetic Resonance (NMR) can be used to measure the interactions between the 

nuclear spins and their environment in a sample. 

     To initiate an NMR measurement, an external magnetic field is applied to polarize the 

sample’s nuclear spins. The nuclear magnetic moments are aligned, and the resulting 

magnetization vector lies on the z-axis. Then, the magnetization is rotated 90 degrees about the 

transverse axis by applying a radiofrequency (RF) signal that oscillates at the Larmor frequency. 

The magnetization vector begins to precess and generates an oscillating magnetic field that 

induces a voltage signal in a solenoid as it relaxes back to its equilibrium position.  

 

Figure 1: NMR measurement process. (1) The magnetization is aligned to the external magnetic field B. 

(2) Then, the magnetization is rotated onto the transverse axis by an RF signal. (3) As a result, the 

magnetization precesses around z-axis as it relaxes. 

 

     The voltage signal oscillates as the x-y components of the magnetization vector precess 

around the external magnetic field. The signal strength also decays as the z component of the 

magnetization vector, Mz, returns to its position parallel to the external magnetic field. This 

signal obtained is called the Free Induction Decay (FID) (Fig. 2).  
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Figure 2: FID signal example: voltage induced oscillates and decays over time due to relaxation of the 

magnetization after perturbation.  

      A quantity called the spin-lattice relaxation rate (W1) can be measured using NMR 

measurements. W1 can provide insight on the interactions between nuclear spins and their 

environment. To measure the W1 of a sample, an NMR measurement technique called inversion 

recovery is used. The technique uses a sequence of RF signals that inverts the magnetization to 

the z-axis, allows it to relax for a time t, and then creates a spin echo to measure the magnitude 

of the (partially) relaxed magnetization. The FID signals obtained from this sequence are used to 

measure relative Mz values during the relaxation period. The relative Mz values are plotted 

versus corresponding time points throughout the relaxation period to obtain a magnetization 

recovery curve (Fig. 3). 

 

Figure 3: Example magnetization recovery curve. The curve is normalized so that when the magnetization 

is rotated 180 degrees from its initial position, M(t) corresponds to a value of -1. When the magnetization 

is back at its initial position after perturbation and relaxation, M(t) corresponds to a value of +1. 
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     Mz relaxes exponentially according to Eq. 4 for a system of ½-spin nuclei: 

                                                        M(t)  =  M0(1 − 2e − W1t)                                                  (4) 

By fitting the magnetization recovery curve to Eq. 4, W1 of the system can be obtained. 

 

1.3. Spin-Lattice Relaxation Rate (W1) 

    The spin-lattice relaxation rate W1 is the rate at which a system’s magnetization’s z 

component relaxes after it has been perturbed in an NMR measurement. W1 corresponds to the 

relaxation mechanism by which the system returns to its equilibrium state by giving energy to 

the surrounding lattice. The value of W1 is dependent on the interactions between nuclear spins 

and their surroundings. Nuclear spins can couple with nuclear spins and electron spins in their 

vicinity, which can affect the W1 of the system. 

     A system can also be defined by a distribution of W1 due to an inhomogeneous environment 

within the material. Materials can have localized regions of charge and spins that can induce 

various W1. For instance, high-temperature superconductors exhibit “glassy” behavior, a type of 

electronic ordering. Glassy materials have electron spin fluctuations that have no preference to 

orientation. Such materials have a distribution of W1 as the nuclear spins couple to these electron 

spin fluctuations, which are not uniform. In this case, the measured magnetization recovery no 

longer fits Eq. 4, a single exponential function. To study the spin dynamics of materials such as 

high-temperature superconductors, a distribution of W1 needs to be considered. 

        

1.4. Inverse Laplace Transform Analysis  

      The relaxation rate of nuclear spins in a sample are affected by their surroundings. There may 

be a distribution of various relaxation rates measured in a sample due to the inhomogeneity in the 

environment.  

      Mz recovery data is often fit to a phenomenological stretched exponential form to obtain a 

characteristic W1 (W1
*) and stretching exponent β.1 

                                                         M(t)  =  1 − 2e − (W1
∗  t)β                                                     (5) 

Unfortunately, it is not necessarily straightforward to understand the microscopic origin of these 

phenomenological parameters. This is particularly true for higher spin nuclei (spin 3/2 or higher). 

To achieve an estimation of such W1 distribution, the Inverse Laplace Transform (ILT) analysis 

method is used.2,3 While the method does not use inverse Laplace transform to obtain the W1  

distribution, it is named after it due to similarities in concept and for the sake of simplicity. 

       Mz recovery can be expressed as an integral over W1 values of the recovery expression and a 

corresponding probability with experimental noise ℇi at each point in the recovery curve. The 

goal is to obtain P(W1), the probability distribution of W1. 
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                                        M(ti)  =  ∫ (1 −  2e−W1ti) P(W1) dW1  + ℇi
∞

0
                                   (6) 

 The Mz recovery integral expression is similar to the Laplace transform with the function f(t) 

analogous to P(W1). 

                                                            F(s)  =  ∫  e−stf(t) dt
∞

0
                                                     (7) 

However, while the inverse Laplace transform can be applied to analytically obtain f(t), a 

straightforward inversion technique cannot be used to obtain P(W1) from the integral expression 

for Mz.  

                                                f(t)  =  L−1{F(s)}  =   
1

2πi
∫ est F(s) ds

i∞

− i∞
                                           (8) 

This is due to the noise measured in the experiment included in Eq. 6. When a direct inversion 

technique like the inverse Laplace transform is applied, the noise may be interpreted as a high 

frequency relaxation rate component. This may result in various solutions of the probability 

distribution function; the inversion is ill-posed. Rather, the probability distribution needs to be 

numerically estimated. 

     An approximation of P(W1) can be achieved using linear algebra and statistical analysis 

techniques. Eq. 6 can be expressed as a vector equation. The integral over the recovery 

expression can be expressed as a matrix called the kernel matrix. The recovery and probability 

distribution can be expressed as vectors. The dimensions of the vector P⃗⃗  correspond to the 

number of bins set in the W1 domain.  

                                                       k(ti , W1j)  =  1 −  2e−W1jti                                                  (9) 

                                                                    Pj  =  P(W1j)                                                            (10) 

                                                  KijPj  =  ∫ k(W1j , ti) P(W1j) dW1
∞

0
                                          (11) 

                                                             M(ti)  =  KijPj  +  ℇi                                                      (12) 

To find the vector P⃗⃗ , we minimize the quantity:  

                                                     ϕ(P⃗⃗ )  =  
1

2
|K̃ P⃗⃗ − M⃗⃗⃗ |

2
 +  

1

2
α|P⃗⃗ |

2
                                          (13) 

The terms are non-negative squares as P⃗⃗  can only be positive by definition. The non-negative 

constraint also serves to narrow down the possible solutions for P⃗⃗ . A best fit to the experimental 

data with noise is made with kernel matrix K̃ and the estimated solution to P⃗⃗ . The first term is the 

sum of residuals squared between the fit and the experimental data. This term is minimized to 

achieve the best fit to the experimental data for the estimation of P(W1). The second term is the 

Tikhonov regularization parameter α multiplied by the squared magnitude of P⃗⃗ .4 Estimations of P⃗⃗  
obtained by the ILT analysis method can have artificial oscillations in its distribution.5 The 

oscillatory behavior increases with noise in the recovery data. The optimal α “smooths out” the 
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oscillations, and generally increases with greater amounts of noise. By minimizing Eq. 13, a 

unique estimation of P⃗⃗  can be obtained based on experimental data with noise.  

       The goal of the project is to determine the effectiveness of ILT method based on 

experimental parameters and quantities such as the number of points and noise in the recovery 

curve. To study condensed matter systems such as high-temperature superconductors, accurate 

estimations of P(W1) must be obtained from experimental recovery data. We find the ILT 

method needs to be optimized to obtain such estimations. 

 

2. Computation Method 

       We tested the effectiveness of the ILT method by comparing P(W1) obtained using ILT and 

analytic solutions of P(W1) for stretched exponential magnetization recovery curves for spin-1/2 

systems (Eq. 5) (Fig. 4). 

 

Figure 4: Stretched exponential recovery curves based on β, the stretching exponential term. β ranges 

from 0.3 to 1 in increments of 0.1. As β increases, the recovery curve becomes steeper. 

 

Stretched exponential recovery functions have analytic solutions of P(W1), which were 

calculated using Eq. 14 and 15.1 W1
* is the characteristic relaxation rate, and β is the stretching 

exponential term. The solutions are plotted in Fig. 5. 

                                                                        s =  
W1

W1
∗                                                                 (14) 

                                          P(s, β)  =  
1

π
∑

(−1)n+1 Γ(nβ+1)

n!snβ+1  sin(nπβ)∞
n=1                                       (15)    
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Figure 5: The analytic solutions of P(W1) of stretched exponential recovery curves made with various β, 

the stretching exponential term. β ranges from 0.3 to 1 in increments of 0.1. As the stretching exponential, 

β increases, the probability distribution becomes narrower. At β = 1, the probability distribution is a delta 

function. 

 

     The stretched exponential recovery curves were made by using Eq. 5. The time domain 

ranged from 10-5 to 105. The recovery points were logarithmically spaced in respect to the time. 

Recovery curves were made with varying experimental parameters such as the number of 

recovery points and noise. Their P(W1) were obtained using the ILT analysis method and were 

compared to the analytic solutions. The comparisons were studied to provide insight on how 

experimental parameters affect the performance of the ILT analysis method. Computations were 

performed on the software Igor Pro V8.04.  

     In the first round of P(W1) comparisons, stretched exponential recovery curves were made 

with various β, 15 recovery points, and no noise. These curves reflected data from an ideal 

experiment as they had no noise. 15 recovery points were chosen, because it is the standard 

number of points measured in experiment. In the second round of comparisons, recovery curves 

were made with various number of points with no noise. In the third round of comparisons, 

recovery curves were made with 15 recovery points and noise. Noise was added to each point 

based on a Gaussian distribution of some standard deviation. The standard deviations used were 

0.01, 0.05, and 0.1, which correspond to signal-to-noise ratios (SNR) of 100, 20, and 10. The 

second and third round of comparisons were made to study the effects of experimental 

parameters on the ILT analysis method. 
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3. Results and Discussion 

3.1 “Perfect Recovery Curve” 

      The stretched exponential recovery curves in the first round of P(W1) comparisons were 

made with “perfect” experimental parameters. The recovery curves were made with no noise and 

15 recovery points. P(W1) of recovery curves made with select β (0.5, 0.7, 0.9) are shown in Fig. 

6, 7, 8 respectively and compared to their analytic solutions. 

 

                                         (a)                                                                        (b) 

Figure 6: Comparison between P(W1) obtained from ILT analysis and the analytic solution. The recovery 

curve was made with 15 points and no noise at β = 0.5. Figure (a) is the comparison in linear scale, and 

Figure (b) is the comparison in logarithmic scale.  
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                                         (a)                                                                        (b) 

Figure 7: Comparison between P(W1) obtained from ILT analysis method and the analytic solution. The 

recovery curve was made with 15 points and no noise at β = 0.7. Figure (a) is the comparison in linear 

scale, and Figure (b) is the comparison in logarithmic scale. 

 

 

                                         (a)                                                                        (b) 

Figure 8: Comparison between P(W1) obtained from ILT analysis method and the analytic solution. The 

recovery curve was made with 15 points and no noise at β = 0.9. Figure (a) is the comparison in linear 

scale, and Figure (b) is the comparison in logarithmic scale. 

 

      The ILT analysis method is more efficient at obtaining accurate P(W1) estimations for 

recovery curves made with smaller β. The analytic solutions for the β = 0.5 and β = 0.7 recovery 

curves are broader, and the estimated solution fits the analytic solution well. However, the 

analytic solution for the β = 0.9 recovery curve is narrower, and the estimated solution does not 

fit the analytic solution well. The smoothing parameter in the ILT analysis method may be 

excessively smoothing out the general distribution for recovery curves made with higher β. Thus, 

the ILT analysis method may not provide the best estimations for recovery curves that are fit to a 

high β. 

      In addition, there are artificial bumps in the P(W1) for the β = 0.5 recovery curves in the high 

W1 region. This is due to the inability to capture the complete recovery of Mz in the selected 

time domain. For stretched exponential recovery curves made with small β, the recovery curve is 

“stretched”, and a higher range time domain is needed to capture the entire curve. In the case of 

the recovery curve made with β = 0.5 (Fig. 4), there are very fast W1 components as the selected 

time domain cannot capture the magnetization’s starting value (-1) in the relaxation process. 

Thus, the P(W1) at high W1 for the β = 0.5 recovery curve (Fig. 6) is discontinuous and 
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oscillatory due to the lack of information concerning the recovery curve. In experiment, it is 

difficult to capture the value Mz at very small times, so it may not be viable to expand the time 

domain outside of simulation. However, systems with recoveries fit to a stretched exponential 

function with β < 0.7 are rarely observed, so this issue may not need to be considered in the 

optimization of the ILT analysis method. 

      The ILT analysis method can provide accurate estimations of P(W1) for recovery curves that 

are fit to stretched exponential functions within a certain range of β due to concerns of excessive 

smoothing. Optimizations have to be made concerning the smoothing parameter α for the method 

to provide valid P(W1) estimations for curves fit to higher β.   

 

3.2 Number of Recovery Points 

      The stretched exponential recovery curves in the second round of P(W1) comparisons were 

made with various number of points to study how the number of recovery points affects the 

P(W1) obtained from the ILT analysis method. P(W1) of recovery curves made with select 

number of points (8, 15, 20) and β = 0.7 are shown and compared to the analytic solution (Fig. 

9). 

 

 

(a) 
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(b) 

Figure 9: Comparison between P(W1) obtained from ILT analysis method for recovery curves made with 

8, 15, 20 points and the analytic solution. The recovery curves were made with no noise at β = 0.7. Figure 

(a) is the comparison in linear scale, and Figure (b) is the comparison in logarithmic scale. 

 

      To obtain accurate P(W1) estimations using the ILT analysis method, the recovery curve 

needs to be made with an optimal number of points. From visual inspection of Fig. 9, it appears 

the number of points in the recovery curves affect the oscillatory behavior in the high frequency 

tails of P(W1) estimations. The oscillatory behavior in the P(W1) estimation for the 8-points 

recovery curve appears to be exaggerated as it has discontinuous amplitudes or bumps. In order 

to obtain P(W1) estimations without artificial bumps in the distribution, the recovery curve needs 

to have at least 15 points distribution for the chosen time domain (10-5, 105) from visual 

inspection. To quantify this observation, the square sum of residuals between the P(W1) 

estimation and the analytical solution was calculated for recovery curves of made with various 

number of points ranging from 6 to 30. Then, the square sums of residuals for each recovery 

curve were plotted versus the number of recovery points (Fig. 10). 
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Figure 10: Square sum of residuals for recovery curves made with varying number of points versus the 

number of recovery points.  

 

      The square sum of residuals between the P(W1) estimation and the analytic solution 

decreases with the number of recovery points. The square sums of residuals near 0 for P(W1) of 

recovery curves made with a number of points greater than 15. In addition, there is no decreasing 

trend in the square sums of residuals with increasing number of points after 15 points from visual 

inspection of Fig. 10. Thus, for the chosen time domain of (10-5, 105), at least 15 recovery points 

should be measured in experiment to obtain good P(W1) estimations using the ILT analysis 

method. This is not an absolute standard for the number of points, but it will result in a fit with a 

low square sum of residuals between the data and the calculated recovery curve based on the 

P(W1) estimations. 

 

3.3 Noise 

     The stretched exponential recovery curves in the third round of P(W1) comparisons were 

made with noise to study how experimental noise can affect the P(W1) obtained from the ILT 

analysis method (Fig. 11). P(W1) of recovery curves made with SNR (100, 20, 10) are shown and 

compared to the analytic solution (Fig. 12). 
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Figure 11: Stretched exponential recovery curves made with β = 0.7, 15 points, and various SNR. 

 

 

(a) 
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(b) 

Figure 12: Comparison between P(W1) obtained from ILT analysis method for recovery curves made with 

varying amounts of noise and the analytic solution. The recovery curves were made with 15 recovery 

points at β = 0.7. Figure (a) is the comparison in linear scale, and Figure (b) is the comparison in 

logarithmic scale. 

 

      Noise impacts the P(W1) estimation obtained from the ILT analysis method significantly. 

The oscillatory behavior in the P(W1) estimations worsens with decreasing SNR as the distance 

between amplitudes or “bumps” increases. The smoothing parameter α cannot effectively smooth 

out oscillations and bumps resulting from a large amount of noise. In particular, the P(W1) 

estimation for the recovery data with a SNR or 10, the distribution appears to be excessively 

smoothed out; yet, large bumps remain.  

     In addition, there are small artificial bumps in the high and low frequency domains for all 

P(W1) estimations in Fig. 12. This is due to the noise shifting the initial and final points of the 

recovery curve that indicate the start and end of the recovery. Fits to the recovery curves may not 

have an initial point of -1 and a final point of +1 due to the noise, which can induce artificial 

high and low frequency components in forms of bumps in the P(W1). Constraints to the fit may 

need to be added to the ILT analysis method regarding the ends of the recovery curves to reduce 

the bumps. Overall, the ILT analysis method needs to be optimized in regard to both the fit and 

smoothing parameter to obtain valid P(W1) estimations from noisy recovery data. 
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     To further study the effect of noise on P(W1) estimations obtained by the ILT analysis 

method, the P(W1) estimations of recovery curves made with the same SNR were compared to 

the analytic solution. This comparison was made to observe how the P(W1) estimations vary for 

recovery curves that share the same P(W1) solution and SNR. Three recovery curves were made 

with β = 0.7, 15 recovery points, and a SNR of 20. Their P(W1) estimations are shown in 

comparison to the analytic solution (Fig. 13). 

 

 

Figure 13: Comparison of P(W1) estimations of recovery curves made with β = 0.7, 15 recovery points, 

and a SNR of 20 and the analytic solution. 

 

      From visual inspection, the P(W1) estimations vary greatly. While the recovery curves of the 

estimations share the same parameters, the estimations differ significantly in aspects of peak 

height, oscillatory behavior, and artificial bumps. Added noise that is obtained from a Gaussian 

distribution with a high standard deviation has large variation. Thus, P(W1) estimations of low 

SNR recovery curves that share the same P(W1) solution vary greatly from each other. To 

quantify this, five recovery curves were made at various SNR. Their mean square sums of 

residuals between the P(W1) estimations and the analytic solution with error bars were plotted 

versus corresponding SNR values (Fig. 14).  
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Figure 14: Mean squared sum of residuals between P(W1) estimations and the analytic solution plotted 

versus SNR. The recovery curves were made with β = 0.7 and 15 recovery points.  

 

      The mean squared sum of residuals and error bars generally increase with decreasing SNR. 

This indicates that the validity of the P(W1) estimations decreases with decreasing SNR. To 

obtain accurate P(W1) estimations in comparison to the analytic solution (< 5% error), 

experimental data with a SNR greater than 50 should be measured.  Also, the large error bars 

indicate that many different P(W1) estimations correspond to recovery data with the same 

analytic solution due to the large variance in noise. Thus, it is imperative to obtain high SNR 

recovery data in experiment to obtain valid P(W1) estimations using the ILT analysis method.  

 

4. Conclusion 

      The ILT analysis method needs optimization to obtain accurate P(W1) estimations from 

experimental recovery data. Experimental parameters such as the number of points and SNR can 

affect the oscillatory behavior in P(W1) estimations. Discontinuous oscillatory behavior occurs 

due to a lack of recovery points for a set time domain and a small SNR. To obtain valid P(W1) 

estimations with the current ILT analysis method, at least 15 points need to be obtained for the 

time domain of (10-5, 105) and a SNR of at least 50 must be achieved for the experimental 

recovery data. However, experimental data with a SNR of at least 50 may be difficult to obtain. 

To obtain valid P(W1) estimations for data with lower SNRs, the smoothing mechanism in the 

ILT analysis method needs to be optimized. For recovery data with a lot of noise, the ILT 

analysis method excessively smooths out the P(W1) estimation in effort to reduce oscillatory 

behavior. Yet, artificial bumps still remain. Thus, an additional smoothing term or constraint 
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may have to be added to remedy these issues. Ultimately, the ILT analysis method is not a 

perfect process and can be improved upon to obtain accurate P(W1) estimations from 

experimental recovery data.   
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