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Abstract

Understanding how light interacts with unique AdS Black Hole spactimes is imperative in under-
standing novel physics through the AdS/CFT correspondence. One way of understanding the motion of
light around a black hole is to capture an image of the black hole. Therefore, we developed a method
of imaging black holes in various spacetime geometries in both 4 and 5 dimensions. In this paper we
present images of AdS4 and AdS5 kerr black holes.

1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence has opened new ways of probing ques-
tions within quantum gravity. First discovered by Juan Maldacena in 1997, the AdS/CFT correspondence
relates the boundary of an AdS spacetime to a Conformal Field Theory. The correspondence is best utilized
when a problem on CFT side of the correspondence has an simpler representation on the AdS side and vice
versa [1].

Anti-deSitter (AdS) Space is a spacetime with a negative cosmological constant. The effect of the
cosmological constant cause photon path’s to deviate from their trajectories in flat spacetime. Therefore,
understanding what the images of a black hole within this AdS spacetime would look like can help elucidate
new physics through the AdS/CFT correspondence. There have been previous attempts at simulating images
of black holes in the past. Most notably would be the work that was done to simulate a black hole similar to
the one that was imaged by the Event Horizon Telescope (EHT), which was the inspiration for this paper.
There have been previous attempts at imaging higher dimensional black holes, however they focused on black
holes in flat spacetimes [2].

In this paper, we generate the images of various 4 and 5 dimensional AdS spacetimes so that they might
be used to understand the CFTs they generate.

2 Method

Traditional photography requires that light is either emitted or reflected from an object and travels to a
camera sensor in order to be detected. However, a black hole adsorbs all light that it comes into contact
with it. Further, the black hole directly affects the paths of photons that pass near by the black hole. In
order to image the black holes in this paper, photons were sent perpendicular from the plane of the camera
“sensor” towards the black hole. Following a similar method of color coding in [2], the photon paths were
integrated until one of two events occurred: either the photon crossed the black hole’s event horizon or it
returns to the same radial distance as it was emitted. If the photon return to the same radial distance as it
was admitted we color coded the position the photon returned to based off which quadrant its path ended
in. Figure 1 illustrates the image the camera would take in empty space.

For reference, the inspiration for the numerical method used to create these images came from the video
included in the New York Times article describing the work behind the Event Horizon Telescope [3].

1



(a) 4D Empty (b) 5D Empty

Figure 1: On the left is an image of empty 4D space. This image was generated by setting the mass and
rotational parameters in the ads Kerr metric to zero. On the right is a representation of the image of empty
5D space. In order to convert our 3 spatial dimensional image to planar image we fixed one coordinate for
the camera sensor to image. This is effectively a slice of the camera’s 3 dimensional image. For reference,
the black circle would represent the image of a black hole with the coloring of the 8 octants representing the
cube surrounding the black hole. The defect in the center of the right half of the space is a error caused by
the numerical integration. Each color represents the quadrant/octant that light would need to travel from
in order to interact with our sensor.

2.1 Integration

In order to integrate the geodesics we followed the procedure in [4] where any time independent metric can
be written in the form

gµν =

(
−α2 + βkβ

k βi
βj γij

)
(1)

where βi is a three vector and γij is the spatial component of gµν . Writing the metric in this form allows
for the geodesic equations to be written as a system of first order differential equations independent of the
a particles proper time. The geodesic equations are written as a function of the spatial coordinates xi and
the contra-variant four velocity ui = giµu

µ such that,

dxi

dt
= γij

uj
u0
− βi (2)

dui
dt

= −αu0∂iα+ uk∂iβ
k − ujuk

2u0
∂iγ

jk (3)

where

u0 = (γjkujuk + ε)1/2/α (4)

with βi = γijβj and γij is the inverse of γij . For photon geodesics, ε = 0. The convenience of using this
method for solving the geodesics equations is the method used to integrate these metrics remains the same
for any time independent metric. Additionally, in AdS space photons can travel the whole space in finite
coordinate time. Meaning a photon can go from x = −∞ to x = +∞ in non-infinite time. Therefore,
allowing us to set clear boundary conditions and stop the integration when the photon travels much longer
than it takes to transverse the space. Further, while this method was originally designed for 3 + 1 split
metrics it generalizes further to 4 + 1 metrics.
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3 Camera Set Up

3.1 4D

The metrics used in this paper are best written in Boyer-Lindquist coordinates.

x1 =
√
r2 + a2 cosφ sin θ,

x2 =
√
r2 + a2 sinφ sin θ,

x3 = r cos θ

(5)

The camera “sensor” has local coordinates (x, y, z), where the origin is the center of the camera’s sensor.
Similar to [2], we choose the coordinates of the camera as

(x1, x2, x3)camera = (d sin i, 0, d cos i) (6)

where i is the angle of inclination between the x1 and x3 coordinate axes. This is illustrated in Figure 2a.
Using this relation, we are able to map the null geodesic’s initial position in the camera’s coordinates to the
initial position in the global coordinates.

To determine the initial velocity for the photon paths we used the convention of c = 1. The photons leave
the camera sensor in the x direction of the the camera’s local coordinates. Therefore, the spatial components
of the photon’s four velocity in the global coordinates are then (− sin i, 0 − cos i). We then determined the
components of the initial velocity of the photon so they leave the camera perpendicular to then sensor. We
found the components of the initial velocity in (r0, θ0, φ0) coordinates to be,

ṙ0 = −2
(a2 + r20) cos θ0 sin i+ r0

√
a2 + r20 cos i cosφ0 sin θ0

a2 + 2r20 + a2 cos 2θ0
,

θ̇0 = 2
r0 sin θ0 sin i−

√
a2 + r20 cos i cosφ0 cos θ0

a2 + 2r20 + a2 cos 2θ0
,

φ̇0 =
cos i sinφ0

sin θ0
√
a2 + r20

(7)

3.2 5D

The same process to define the camera’s initial setup in 4D was used for the 5D case. The major difference
is the images generated were taken by fixing one of the camera’s local coordinates. Therefore, the image
displayed is a slice of the 3 dimension shadow of the 5D black hole. The global coordinates used to represent
the metrics are again best written in Boyer-Lindquist coordinates.

x1 =
√
r2 + a2 cosψ sin θ,

x2 =
√
r2 + a2 sinψ sin θ,

x3 =
√
r2 + b2 cosφ cos θ,

x4 =
√
r2 + b2 sinφ cos θ,

(8)

Following the same process as above, the canera sensor’s local coordinates, (x, y, z, w), are related to the
global coordinates in the following way

(x1, x2, x3, x4)camera = (d sin i, 0, d cos i, 0) (9)

where i is the angle of inclination between the x1 and x3 coordinates, best illustrated in Figure 2b. Similar
to the 4D case, we launched the photons in the x direction in our camera’s local frame. Following the same
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(a) 4 Space Time Dimensions (b) 5 Space Time Dimensions

Figure 2: Schematic of the spatial relation of the camera sensor and the black hole to be imaged. On the
left a 4D black hole sits at the origin of the global coordinates (x1, x2, x3). Null rays emerges from the z-y
plane with initial velocity in the x direction in the camera’s coordinates. On the Right a 5D black hole sits
at the origin of the global coordinates (x1, x2, x3, x4). Null rays emerges from the z-y-w cube with initial
velocity in the x direction in the camera’s coordinates. For imaging purposes, one of the dimensions of the
camera’s cubic sensor are compressed to make a 2 dimension image.

procedure as above, the initial velocities of the photons in terms of their initial position in the (r, θ, ψ, φ)
global coordinates are:

ṙ0 =

√
r20 + a2 (cos θ0 cosφ0 sin i+ cos i cosψ0 sin θ0)

r0

θ̇0 =
cosφ0 sin i sin θ0 − cos i cosψ0 cos θ0√

r20 + a2

ψ̇0 =
cos i sinψ0

sin θ0
√
a2 + r2

φ̇0 =
sin i sinφ0

cos θ0
√
r20 + a2

(10)

4 Metrics

The Kerr-AdS4 solution in Boyer-Linquist coordinates has the metric [5]:

ds2 = −∆r

ξ2

(
dt− a

Ξ
sin2 θdφ

)2
+
ξ2

∆r
dr2 +

ξ2

∆θ
dθ2 +

∆θ sin2 θ

ξ2

(
adt− r2 + a2

Ξ
dφ

)2

,

∆r(r) =
(
r2 + a2

)(
1 +

r2

l2ads

)
− 1

r+
(r2+ + a2)

(
1 +

r2+
l2ads

)
r,

∆θ(θ) = 1− a2

l2ads
cos θ,

ξ2(r, θ) = r2 + a2 cos2 θ,

Ξ = 1− a2

l2ads
.

(11)

We used the same coordinate system as defined in Equation 5 where a is the rotational parameter with
the black hole rotating in the x1 − x2 plane, lads is the AdS length scale, and r+ is the radius of black hole

4



event horizon. The mass parameter of this black hole is therefore µ = 1
r+

(r2+ + a2)(1 +
r2+
l2ads

). In order to

find the extremal limit of this black hole we need to find the limit where the temperature of the black hole
approaches zero. From [6], the black hole temperature is:

TAdS−Kerr4 =
r+
(
1 + a2l−2 + 3r2+l

−2 − a2r2+
)

4π(r2+ + a2)
(12)

By requiring both the temperature to be positive, T ≥ 0, and the rotation of the black hole to be a ≤ 11

we find a to be

a ≤


√

l2+3r2+
l2−r2+

, r+ ≤ l√
3

1, r+ > l√
3

(13)

By now requiring T = 0 we find the extremal limit to be when r+ ≤ l√
3

and a =

√
l2+3r2+
l2−r2+

.

The Kerr-AdS5 solution in Boyer-Linquist coordinates has the metric [5]:

ds2 = −∆r

ξ2

(
dt− a

Ξa
sin2 θdψ − b

Ξb
cos2 θdφ

)2

+
ξ2

∆r
dr2 +

ξ2

∆θ
dθ2

+
∆θ sin2 θ

ξ2

(
adt− r2 + a2

Ξa
dψ

)2

+
∆θ cos2 θ

ξ2

(
bdt− r2 + b2

Ξb
dφ

)2

,

+
1 + r2l−2ads

r2ξ2

(
abdt− b(r2 + a2) sin2 θ

Ξa
dψ − a(r2 + b2) cos2 θ

Ξb
dψ

)2

,

∆r(r) =
1

r2
(r2 + a2)(r2 + b2)(1 +

r2

l2ads
)− 1

r2+
(r2+ + a2)(r2 + b2)(1 +

r2+
l2ads

),

∆θ(θ) = 1− a2

l2ads
cos θ,

ξ2(r, θ) = r2 + a2 cos2 θ,

Ξa = 1− a2

l2ads
,

Ξb = 1− a2

l2ads
.

(14)

Using the coordinate system defined in 8, the black hole has two independent rotational parameters.
Therefore, the rotational parameter a denotes the rotation in the x1−x2 plane and b represents the rotation
in the x3 − x4 plane.

Again to understand the extremal limits of this spacetime we need to find when TAdS5
= 0. The

temperature of an AdS5 black hole is defined as

TAdS4
=

1

2π

[
r+

(
1 +

r2+
l2

)(
1

r2+ + a2
+

1

r2+ + b2

)
− 1

r+

]
(15)

In the case where the black hole is spinning around a single axis, the temperature is strictly positive.
Therefore, the black hole can become extremal only if and only if it is rotating around both axis of rotation.
For the case when the black hole has equal rotation in both planes of rotation we find the extremal limit as

1This condition is chosen so that the boundary rotates slower than the speed of light
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Figure 3: High Resolution Image of a standard Schwarzschild Black Hole

a = b = r+

√
1 + 2r2+, r+ ≤

1√
2

(16)

Of course it is not necessary for the two rotational parameters to be equal for the black hole to be extremal.
However, there is no analytical expression for the black hole radius in the non-equally rotating case.

5 Images

5.1 4D

As a proof of concept, we created a high-resolution, 512x512 pixels, image of a Schwarzschild Black Hole.
The eventual goal of this project will be to generate all images at these resolutions, see Figure 3. However,
the time to generate a high resolution image is on the order of a day. Even after considerable improvements
to the computational method, including generating pixel in parallel on a quad core CPU, each image will
take about 8 hours to simulate. Therefore, all further images are of lower resolution, 100x100 pixels, for
comparison purposes. In this image, we can see in detail how photons are bent around the black hole. The
white pixels represent photons that are bent around the black hole and come back to the camera. Therefore,
we can see the thin photon ring that would surround any Schwarzchild Black Hole.

The main purpose of this project is to understand the geometries generated by complex Black Hole AdS
spacetimes. An example of such an extreme spacetime is nearly maximally spinning Kerr-AdS4. As seen in
figure 4b, the image of the black hole shows the how extreme the effect of the AdS lensing coupled with the
rotation of the black hole is on the path of the photons. Compared to figure 4a, which depicts a relatively
slow spinning black hole, the faster the black hole spins the larger the event horizon appears. However, the
event horizon imaged is not the true event horizon. These images tell us that the light coming from one end
of the spacetime will have less of an effect on the boundary on the opposite end. Even further, these images
show that in a maximally spinning AdS-Kerr spacetime there would be no causal relationship between the
boundary of the spacetime and any other point on the boundary. Lastly, we see the spin of the Black Hole
breaks the planar symmetry of the space.
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(a) Slow Spinning Kerr- AdS4 (b) Fast Spinning Kerr- AdS4

Figure 4: On the right is a 4D Kerr-AdS black hole with spin of 0.6 and a radius of 0.5 in units of the AdS
length scale. Maximal spin for this black hole is near 0.763. On the left is a larger black hole with radius 1
and spin 0.3. For both black holes the axis of rotation is parallel to the plane of the image.

5.2 5D

The major difference between imaging in 4 dimensions and 5 dimensions is the image of a 5 spacetime
dimensional object would create a 3 spatial dimensional image. In order to show this image on paper, we
decided to slice this 3 spatial dimensional object into 2 spatial dimension slices. By doing this, we can view
the image in the same manor as viewing slices of an MRI image.

For the sake of brevity, we will only illustrate one example of AdS5. Figure 5 shows the cross sections
of a rotating Kerr-AdS5 Black Hole. Interestingly, we see three distinct rings around the black hole. As
expected there is still a faint photon ring that orbits the black hole. Additionally, we see two distinct rings.
These rings show how lights coming from the dimension perpendicular to the ones shown are twisted into
one another. Unlike the 4 dimensional case, the size of these regions are symmetric across the plane.

There is no maximum rate of rotation for a 5 dimension Kerr Black Hole. Therefore, we see Kerr Black
Holes in flat space time appear to remain the same size as the rate of rotation increases. However, in
AdS space there is a maximum speed for Kerr Black Holes. As in the 4 dimensional case, our work shows
(not depicted) the event horizon and the photon ring increase in size as the black hole spins approach the
maximum. This implies that there are no causal links between opposite sides of the spacetime as the black
holes approach extrema.

6 Conclusion

In this paper we have demonstrated a method for imaging black holes in higher dimensions. Using this
method we investigated the properties of Kerr-AdS Black Holes in 4 and 5 dimensions. We found that as
the spin of the Black Holes approach extrema the warping of the spacetime prevents any causal connection
between opposite ends of the spacetime. In the future, we plan on using these observations to investigate
how the physics that is described by the CFT on the boundary of the spacetime is affected by the lack of
causal links.
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(a) y8 (b) y4 (c) y2

(d) y1 (e) y-1 (f) y-2

Figure 5: Here we demonstrate slicing through the 3 spatial dimension image of a rotating Kerr-AdS5 Black
Hole. The Center of the image is located at y0, in units of AdS length. This particular black hole is rotating
around two axes with rotational speed of 1 around both and has a radius of 1.
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