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Coupled cavity arrays (CCAs), in which photons interact with atom-like emitters, have recently received
significant attention for their applicability to quantum many-body simulations and quantum information pro-
cessing. We investigate the use of emitters to induce localization and facilitate quantum state transfer (QST) in
CCAs operating under the Tavis-Cummings-Hubbard model. These questions are probed with a computational
model using exact diagonalization. We find that the introduction of an emitter to an emitter-free CCA produces
localized modes with eigenvalues outside of the band. Secondly, we demonstrate the similarities between a CCA
with an emitter in each outermost cavity and a CCA with modified outermost intercavity couplings, the latter of
which has been shown to facilitate high-fidelity QST. This second result suggests that for QST applications, the
introduction of emitters to a CCA could serve as an alternative to adjusting the intercavity couplings.

I. INTRODUCTION

Strong interactions between light and matter can be induced
by trapping photons and atom-like emitters within an opti-
cal cavity. The study of such systems constitutes the field
of cavity quantum electrodynamics (QED). Over the past two
decades, the experimental realization of such cavity systems
has allowed for the study of quantum many-body phenomena,
including the simulation of phenomena encountered in con-
densed matter physics [1]. In contrast to condensed matter
systems, which typically contain on the order of 1023 parti-
cles, cavity QED systems permit the manipulation of individ-
ual system components. This level of experimental control
makes them attractive candidates for performing simulations
of quantum many-body phenomena. In addition, cavity QED
systems have applications in quantum information processing,
where they have been proposed as a potential implementation
of spin chains for quantum state transfer [2–4]. Finally, cavity
systems permit the emergence of polaritons, or quasiparticles
consisting of a superposition of photonic and atomic excita-
tions [1, 2, 5]. The study of polaritons may allow us to probe
new strongly correlated regimes of light-matter interaction.

In recent years, a type of cavity system known as a cou-
pled cavity array (CCA) has received a considerable amount
of attention [1, 6, 7]. A CCA consists of a chain of optical
cavities, each of which may contain one or more atom-like
emitters coupled to the cavity’s electromagnetic field. Pho-
tons may hop between adjacent cavities in the CCA due to the
overlap of neighboring resonance modes.

CCAs have become increasingly experimentally viable in
recent years [8, 9]. In order to observe quantum many-
body phenomena, the system must exist in the strong cou-
pling regime of cavity quantum electrodynamics, where light-
matter interactions are stronger than losses to the environ-
ment. Modern optical cavities achieve this by localizing light
on the nanometer scale. One of the commonly used opti-
cal resonators for these studies is the photonic crystal cav-
ity, formed by periodic refractive index alteration at the sub-
wavelength scale. Although the cavity is a few micrometers
across, nanoholes fabricated in the material change the index
of refraction such that light is localized to an area of a few
hundred nanometers [8].

One of the attractive choices for quasi-atoms in solid-state

systems are color centers formed as lattice defects in semi-
conductors [10]. The defect causes electron wavefunctions
to localize at that point, which creates an isolated set of en-
ergy levels within a solid-state material. The most common
material substrates for this purpose are silicon carbide and di-
amond. For example, [11] describes a photonic crystal cavity
with a triangular cross-section, fabricated in a silicon carbide
substrate with various possible color centers.

II. TAVIS-CUMMINGS-HUBBARD MODEL WITH EXACT
DIAGONALIZATION

Our research focuses on the theoretical study of CCAs oper-
ating under the Tavis-Cummings-Hubbard model. This model
describes an array of coupled cavities in which each cavity
may contain one or more two-level emitters. The number of
cavities is given by N . A total of M excitations is present in
the system. At any given time, each excitation may exist as a
photon or as an emitter in the excited state.

We study these CCA systems using exact diagonalization.
The advantage of this approach is that we obtain exact values
for the eigenenergies of the system. This precision, however,
means that memory and runtime constraints limit us to study-
ing small arrays. Modeling and diagonalization were imple-
mented in Python 3 using standard packages such as NumPy,
with no specialized software being required.

The Tavis-Cummings-Hubbard Hamiltonian is given by:

H = − J
∑
n

(a†n+1an + a†nan+1) +∑
n

[
ωca
†
nan +

∑
e

(
ωeσ

+
n σ
−
n + g(σ+

n an + a†nσ
−
n )
)]
(1)

Here, J is the rate of photon hopping between cavities and
g is the rate of cavity-emitter photon exchange. The cavity
frequency is given by ωc and the emitter frequency by ωe. The
index n refers to an individual cavity, and the index e refers
to an individual emitter within a cavity. The operators for the
creation and destruction of a photon in cavity n are given by
a†n and an respectively. The operators for the excitation and
deexcitation of an emitter in cavity n are given by σ+

n and σ−n
respectively. Such a system is shown in Fig. 1.
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FIG. 1: A coupled-cavity array operating under the Tavis-
Cummings-Hubbard model, with emitters represented by blue dots
and photons represented by red arrows. J is the rate of photon
hopping between cavities, g is the rate of cavity-emitter photon ex-
change, ωc is the cavity frequency and ωe is the emitter frequency.
Figure adapted from Knap [12].

Experimentally, the parameter J is tuned by changing the
separation between two adjacent photonic crystal cavities.
This is accomplished by altering the number of nanoholes fab-
ricated between the cavities, with fewer holes corresponding
to a smaller separation and thus a larger J . This parameter is
often expressed as J/2π, with typical values varying from a
few GHz to a few hundred GHz [11].

The parameter g depends on how the emitter is positioned
relative to the cavity’s electric field profile, as well as on the
choice of color center. When expressed as g/2π, typical val-
ues are on the order of a few GHz [11].

In order to simplify our model, we do not consider losses to
the environment. Loss processes, governed by the cavity en-
ergy decay rate κ and the emitter energy decay rate γ, are crit-
ical to take into account in any experimental realization. The
addition of these terms to our computational model is feasible
and is therefore an important area for further study.

The preliminary step in constructing the Hamiltonian given
by Eq. 1 is to construct the basis of the system. This requires
listing all possible states the system could be in. The overall
system is described by the parameters N , M , and the number
of emitters in each cavity. Given these parameters, the states
describe the possible locations of the excitation(s). Consider,
for example, a small system consisting of two cavities, one
excitation, and a single emitter in the first cavity. This system
has three possible states:

1 |n1〉 0 |n2〉 0 |e1〉 — photon in first cavity
0 |n1〉 1 |n2〉 0 |e1〉 — photon in second cavity
0 |n1〉 0 |n2〉 1 |e1〉 — emitter in first cavity excited

where the |ni〉 represent cavity sites and the |ei〉 represent
emitter sites. A coefficient of 1 indicates that there is an exci-
tation in that site, and a coefficient of 0 indicates that there is
no excitation.

The generation of all possible states by hand becomes te-
dious for systems with a greater number of excitations. This
process was automated using a recursive algorithm. The al-
gorithm is flexible, allowing the user to input any values for
N and M and dictate the number of emitters in each cavity
individually. We are limited only by the memory and runtime
constraints on the diagonalization of our Hamiltonian.

The Hamiltonian gives a quantum mechanical description
of the possible energy states of a system. In our case, con-
struction of the Hamiltonian requires considering which states

in the basis are immediately accessible from a given current
state. For example, each photon can hop either to the left or to
the right to put the system into a new state. An emitter in the
ground state can be excited by a photon in its cavity, and like-
wise an excited emitter can deexcite to create a photon in its
cavity. Our algorithm systematically identifies each of these
possible transitions for each state, and enters the correspond-
ing terms into the Hamiltonian matrix. The basis states are
stored in a hashtable data structure for efficient lookup. The
user can set the individual values of J for each intercavity
coupling, ωc for each cavity, and ωe and g for each emitter.

These two algorithms, for constructing the basis and con-
structing the Hamiltonian, together provide us with a flexible
computational model to study the behavior of CCAs operating
under the Tavis-Cummings-Hubbard model. The algorithms’
flexibility means that there is a large parameter space avail-
able for exploration. In this report, we focus on two different
thrusts of investigation. The first is the use of defects to induce
localization in a CCA. The second is quantum state transfer
across a CCA.

A. Defects for Localization

Localization in a CCA is defined by the emergence of
eigenstates in which the excitation(s) have a very large proba-
bility of existing in a small region of the array, and a low prob-
ability of existing elsewhere. These eigenstates are known as
localized modes, whereas eigenstates with a more even prob-
ability distribution are known as extended modes. For both
classical and quantum systems, it is well known that the in-
troduction of a “defect” typically induces localization at the
site of that defect [13]. For example, in a homogeneous cou-
pled mass-spring chain, if we replace a single spring with a
spring of larger spring constant, we will observe an eigen-
state in which only the masses near the defect spring oscillate
[14, 15].

In this report, we investigate the use of emitters to induce
localization in a CCA operating under periodic boundary con-
ditions. Specifically, we can introduce a defect cavity con-
taining an emitter into an emitter-free CCA. This topic is eas-
ily studied with exact diagonalization, because localization ef-
fects can be observed directly from the eigenvalues and eigen-
vectors of the system. Thus, to generate our data, we simply
diagonalize Eq. 1 numerically for a given set of parameters.

B. Quantum State Transfer

The question of how to transmit a quantum state across a
network is a key issue in quantum information research. In a
chain of coupled qubits, this means transferring an arbitrary
quantum state of the qubit located at one end of the chain to
the qubit at the other end. Many proposals have focused on
implementations using spin chains, or arrays of spin-1/2 par-
ticles undergoing spin-spin interactions [16, 17]. CCAs have
attracted interest because they can serve as experimental real-
izations of spin chains [4].
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Quantum state transfer (QST) is a transmission mechanism
in which we initialize a quantum state at one end of a spin
chain and then simply let the system evolve in time until the
state appears at the opposite end of the chain. This method
is attractive because no outside control or manipulation of the
system is required after the initialization [2].

Unfortunately, due to dispersion of the initial wavepacket,
perfect state transfer is impossible for homogeneous spin
chains withN > 3. Perfect transfer can be achieved, however,
by engineering each intercavity coupling value Jn. One such
scheme is shown in Fig. 2, where the Jn are engineered ac-
cording to Jn =

√
n ∗ (N − n), where N is the chain length

and n is the index of the current site [17].

FIG. 2: A coupled-cavity array with six cavities where the intercav-
ity coupling rates Jn are individually engineered to facilitate per-
fect quantum state transfer. In this case, the Jn are set by Jn =√

n ∗ (N − n), where N is the chain length and n is the index of
the current site. Figure from Christandl [17].

The need to individually engineer each Jn poses an experi-
mental challenge. Because of this drawback, researchers have
investigated proposals to achieve near-perfect QST by altering
only the outermost coupling values [3, 18, 19]. This would al-
low the spin chain to remain largely homogeneous. Although
most research in this area has dealt with generic spin chains,
several papers have focused on CCA implementations specifi-
cally, including CCAs in which every cavity contains an emit-
ter [2].

We are interested in investigating if “defects” in parameters
other than Jn can facilitate robust state transfer. Specifically,
we consider whether we can achieve robust QST by placing
emitters in the outermost cavities, while the other cavities con-
tain no emitters.

We investigate QST by looking at the time evolution of our
system. We must calculate |ψ(t)〉 given the system’s initial
state |ψ(0)〉. This is accomplished with the standard quantum
mechanical formulation for time evolution:

|ψ(t)〉 = U ∗ |ψ(0)〉 (2)

U = e−iHt = Se−iDtST . (3)

Here, H is the time-independent Hamiltonian, S is the ma-
trix with the eigenvectors of H as its columns, and D is the
diagonalized version of H . We take ~ = 1.

QST from one end of a CCA to the other necessitates the
use of open boundary conditions, as opposed to to the periodic
boundary conditions we assumed for the study of localization.

III. INDUCING LOCALIZATION WITH EMITTERS

We first look at a system withN = 40 cavities and one exci-
tation. Periodic boundary conditions are implemented. None
of the cavities contains an emitter. We choose J = 1, and set
ωc = 0 for simplicity. Figure 3 depicts the expected eigenspec-
trum of this system, given by

E(n) = ωc − 2Jcos
(2πn
N

)
(4)

where n is an integer with 0 ≤ n ≤ N . Equation 4 is derived
by applying the tight-binding approximation, first introduced
in condensed matter physics, to the coupled-cavity array [20].
Note the presence of degenerate eigenvalues in Fig. 3, which
arise from the fact that

cos
(2πn
N

)
= cos

(2π(N − n)
N

)
. (5)

FIG. 3: The eigenspectrum of a coupled-cavity array system with 40
cavities, one excitation, and no emitters. We set the intercavity cou-
pling rate J = 1 and the cavity frequency ωc = 0. The eigenvalues
are displayed in ascending order from left to right, so the first eigen-
value corresponds to the lowest-energy state and the fortieth eigen-
value corresponds to the highest-energy state. The eigenspectrum is
described by Eq. 4.

We proceed by adding one emitter in the twentieth cavity,
while the other cavities still contain no emitters. The cavity
choice is arbitrary due to the presence of periodic boundary
conditions. We keep J = 1 and choose g = 3 such that ex-
citation is preferred over hopping. We set ωe = 0 for sim-
plicity. Figure 4 shows that this setup causes the emergence
of one outlier eigenstate above the band and another outlier
eigenstate below the band. The defect also causes the loss of
degeneracy.

The squared components of the lowest-energy eigenvector
are depicted in Fig. 5. It is clear that the excitation is very
likely to be found the cavity containing the emitter, either as
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FIG. 4: The eigenspectrum of a coupled-cavity array system with
40 cavities, one excitation, and one emitter in the twentieth cavity.
We set the intercavity coupling rate J = 1 and cavity-emitter photon
exchange rate g = 3 such that excitation is preferred over hopping.
Cavity frequency ωc and emitter frequency ωe are both set to zero for
simplicity. The addition of an emitter in the twentieth cavity causes
the emergence of one outlier eigenvalue above the band and another
below the band.

a photon in that cavity or in the emitter itself. Thus, this a lo-
calized state. The squared components of the highest-energy
eigenvector are identical to those of the lowest-energy eigen-
vector, so this is a second localized state.

This analysis relies on the fact that g > J . If we instead set
g < J such that hopping is preferred over excitation, we no
longer observe outlier eigenvalues below and above the band.
We do, however, see two states that display some localization,
with the excitation preferentially being found in the emitter.
These two states fall in the middle of the band, corresponding
to the twentieth and twenty-second eigenvectors. This sug-
gests that when g < J , the two outlier eigenvalues migrate to
the middle of the band.

We next examine how localization manifests itself when we
introduce a block of cavities that each contain an emitter. We
again consider our same system of 40 cavities with one exci-
tation, with J = 1 and g = 3. Now, we add a single emitter
to each of the five cavities in the center of the array (cavities
18-22). The location of the cavities is again arbitrary due to
periodic boundary conditions. Figure 6 shows that we now
observe five outlier eigenstates above the band and five be-
low the band, corresponding to our block of five cavities. The
photon is most likely to be found in the block of cavities with
emitters, as can be seen in Fig. 7.

Overall, these results show that when we introduce emitters
into one or several cavities of an emitter-free CCA, outlier
states appear in the eigenspectrum if g > J . These corre-
spond to modes in which the photon is localized at the cavity
or cavities with emitters. When g < J , we observe modes that
display localization at the emitter, but these states appear in
the middle of the eigenspectrum rather than below and above
the band.

FIG. 5: The squared components of the lowest-energy eigenvector
for a coupled-cavity array system with 40 cavities, one excitation,
and one emitter in the twentieth cavity. The black dot represents
the probability that the excitation will be found as a photon in the
emitter’s cavity. The red dot represents the probability that the exci-
tation will be found in the emitter. The addition of the emitter causes
this eigenvector to become a localized state, with the excitation most
likely to be found in the cavity with the emitter.

IV. QUANTUM STATE TRANSFER WITH EMITTERS

Here we consider the possibility of achieving robust quan-
tum state transfer across a CCA through the judicious place-
ment of emitters. We show that for the correct parameters, a
CCA with one emitter in each of the outermost cavities be-
haves identically to a CCA with the outermost J values mod-
ified and no emitters present. The latter is the system stud-
ied by Zwick et. al and Banchi et. al. for QST applications
[18, 19].

In a CCA with an emitter in each edge cavity, we show that
the two emitters effectively function as “pseudo-cavities.” An
excitation in an emitter state has only the option to return to
the ground state. In contrast, due to the presence of an emitter,
an excitation in an edge cavity now has two options—to excite
the emitter in that cavity or to hop to the adjacent cavity.

Thus, each emitter takes on the role of an outermost cavity,
from which the excitation has only one option for movement.
This means that a system of N cavities with one emitter in
each edge cavity behaves similarly to a system of N + 2 cav-
ities with no emitters (see Fig. 8). Note that this effect is
present only when the emitters are placed in the outermost
cavities. Placing an emitter in an interior cavity introduces a
“branching” effect rather than increasing the effective length
of the chain.

We now examine the conditions under which the two afore-
mentioned systems behave identically. Consider a CCA of
lengthN with uniform coupling strength J and cavity-emitter
exchange rate g, with one emitter in each outermost cavity.
Next, consider a CCA of length N + 2 with modified edge
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FIG. 6: The eigenspectrum of a coupled-cavity array system with
40 cavities, one excitation, and one emitter each in cavities 18-22.
We set the intercavity coupling rate J = 1 and cavity-emitter photon
exchange rate g = 3 such that excitation is preferred over hopping.
Cavity frequency ωc and emitter frequency ωe are both set to zero
for simplicity. The addition of the block of five emitters causes the
emergence of five outlier eigenvalues above the band and five below
the band.

FIG. 7: The squared components of the lowest-energy eigenvector
for a coupled-cavity array system with 40 cavities, one excitation,
and one emitter each in cavities 18-22. The black dots represents
the probabilities that the excitation will be found as a photon in a
given emitter’s cavity. The red dots represent the probabilities that
the excitation will be found in a given emitter. The addition of the
block of emitters causes the excitation to become localized within
the block.

couplings J ′ and bulk coupling strength Jb, with no emitters
present. The two CCAs will behave identically in the case
that J = Jb and g = J ′. Under these conditions, their Hamil-
tonians are identical except that g and J ′ appear with oppo-
site signs according to Eq. 1. The two Hamiltonians are in
fact similar matrices and thus have identical eigenvalues. This

means that the time evolution of the two systems will be iden-
tical.

The placement of an emitter in each edge cavity could
therefore serve as an alternative to detuned J values to facili-
tate significantly improved QST compared to a homogeneous
CCA. This effect is demonstrated for an example system be-
low.

We consider a CCA with 50 cavities, one excitation, and
J = 1. We hope to transfer a quantum state across the array,
from the first cavity to the fiftieth cavity, by initializing a state
in the first cavity and then letting the system evolve in time.

Let us first consider this system with no emitters. We ini-
tialize the excitation in the first cavity. Figure 9 depicts the
evolution of the system in time. We can see that the transfer is
poor due to dispersion effects—that is, the state arrives at the
fiftieth cavity with a probability of 41.6% percent, rather than
100 percent.

Next, we add a single emitter in the first and fiftieth cavi-
ties. We set g = 0.554 following Banchi’s optimal J ′ value
reported for an array with N = 51 cavities [19]. Banchi re-
ports that this optimal value does not require fine-tuning, so
the slight difference in N values can easily be neglected here.
The excitation is initialized in the emitter state (rather than the
photon state) of the first cavity. Figure 10 shows that the trans-
fer fidelity improves greatly compared to the CCA with no
emitters. The excitation appears in the emitter of the twenty-
fourth cavity with a probability of 90.0 percent.

The system depicted in Fig. 10 behaves identically to a sys-
tem with no emitters and with parameters N = 52, Jb = 1,
and detuned edge couplings J ′ = 0.554, as was argued above.
Thus, many of the conclusions of [18, 19] also apply to CCAs
with one emitter in each end cavity. State transfer is poor in
Fig. 9 due to dispersion of the initial wavepacket. In contrast,
the system with emitters in its edge cavities experiences low
dispersion and thus robust state transfer (see Fig. 10). Fol-
lowing Zwick and Banchi, this system operates in the ballistic
regime, which is characterized by equally spaced eigenval-
ues in the middle of the band [18, 19]. The normal modes in
this linear region of the eigenspectrum dominate the transmis-
sion dynamics. A system with all Jn engineered for perfect
state transfer exhibits a perfectly linear eigenspectrum [17],
while the edge detuning method approximates a linear spec-
trum without requiring the individual engineering of each cav-
ity site.

The optimal J ′ value (corresponding to the optimal g value
for the emitter system) is shown to scale as N−1/6 for large
N values [19]. Banchi reports that when using the optimal J ′

value, state transfer fidelity remains high even for very large
N . The present report does not calculate fidelity values, which
require averaging over all possible initial states |ψ(0)〉 from
the Bloch sphere. The transmission probabilities reported here
are for one particular |ψ(0)〉 corresponding to an excitation
initialized in the first cavity.
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FIG. 8: Comparison of two coupled cavity arrays. The top array has N = 4 cavities and an emitter in each edge cavity. It has uniform
intercavity coupling strength J and cavity-emitter exchange rate g. The bottom array has N = 6 cavities and bulk intercavity coupling strength
Jb, with the edge couplings detuned to J ′. The two systems will display identical time evolution if J = Jb and g = J ′. Each emitter’s excited
state functions as an additional “pseudocavity,” giving the two systems the same effective length.

FIG. 9: Time evolution of a coupled cavity array system with N = 50
cavities, M = 1 excitation, and intercavity coupling strength J = 1.
The system has no emitters. The excitation is initialized at one end
of the array at time t = 0, and the system is then allowed to evolve in
time without any interference. Transfer is poor, with the state having
a 41.6% probability of arriving at the opposite end of the array at
about t = 26.

V. CONCLUSIONS AND OUTLOOK

Coupled cavity arrays have attracted significant interest in
recent years for their potential use in quantum many-body
simulations and quantum information processing, as well as

FIG. 10: Time evolution of a coupled cavity array system with N
= 50 cavities, M = 1 excitation, intercavity coupling strength J = 1,
and g = 0.554. The outermost cavity at each end of the array contains
one emitter. The excitation is initialized in the emitter of the first
cavity at time t = 0. Transfer is significantly improved compared to
Fig. 9, with the excitation having a 90.0% probability of reaching the
emitter in the fiftieth cavity at about t = 29.

the study of new regimes of light-matter interaction. Recent
progress on the experimental side has been considerable, with
CCA implementation now viable using photonic crystal res-
onators.

In this report, we use exact diagonalization to investigate
CCAs operating under the Tavis-Cummings-Hubbard model.
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We implement a computational model that performs exact di-
agonalization numerically, while permitting great flexibility
in the system parameters. This model is used to study two
separate aspects of CCA behavior, namely localization and
quantum state transfer.

It is a familiar property that a “defect” in a system can be
used to introduce localized modes at the site of the defect. We
demonstrate that this effect occurs when an emitter is placed in
one cavity of a CCA that otherwise contains no emitters. For
an array with one excitation and g > J (excitation preferred
over hopping), the introduction of an emitter causes two out-
lier eigenstates to emerge, one below and one above the band.
Similarly, when an emitter is added to each of n adjacent cav-
ities, we see the emergence of n outlier eigenstates above the
band and n below.

CCA systems are also a potential platform for quantum
state transfer, in which a quantum state is initialized at one
end of a spin chain and then allowed to evolve freely until it
reaches the other end. For arrays with more than three cavi-
ties, perfect transfer can be achieved only by individually en-
gineering each intercavity coupling strength Jn. To avoid this
experimental difficulty, many proposals have focused on mod-
ifying only the outermost coupling values to facilitate robust
state transfer in the ballistic regime.

We demonstrate the similarity between a system with mod-
ified edge couplings and a CCA with uniform J with an emit-
ter placed in each outermost cavity. In particular, consider a
CCA of lengthN with uniform intercavity coupling J , cavity-
emitter exchange rate g, and one emitter in the first and last
cavities. We show that this system is effectively equivalent
to a CCA of length N + 2 with bulk coupling Jb, modified
edge couplings J ′, and no emitters present, in the case that
J = Jb and g = J ′. Under these conditions, the Hamilto-
nians of the two systems are similar matrices and thus have
identical eigenvalues, which means the systems have identical
time evolution.

This result suggests that the placement of emitters in edge
cavities could be used as an alternative to adjusting the out-
ermost couplings as a means of facilitating robust QST. For
a photonic crystal cavity implementation, this corresponds to
fabricating a color center in each edge cavity rather than ad-

justing the number of nanoholes fabricated between the outer-
most adjacent cavities.

The QST results presented here could be furthered by cal-
culating average fidelity values for the CCA with emitters in
its edge cavities. This report presents only the probability of
transfer for one specific case, that in which an excitation is
initialized in the first cavity.

The connection between modified J values and the place-
ment of emitters could also be investigated for other CCA ar-
rangements. For example, [3] looks at adjusting the two outer-
most J values at each end of the array. In addition, [2] consid-
ers using a CCA with an emitter in each cavity to implement
very weak outer J values, which facilitate QST with Rabi-like
dynamics rather than in the ballistic regime. These dynamics
involve the formation of localized modes at the array edges,
so the conclusions of Section III may be relevant.

The Tavis-Cummings-Hubbard model, in contrast to the
more standard Jaynes-Cummings-Hubbard model, permits the
placement of multiple emitters in a single cavity of a CCA, a
relatively new experimental possibility that is not considered
in this report [10]. Thus, the results presented here could be
reexamined for cases in which multiple emitters couple to a
single cavity mode.

Lastly, our computational model does not account for loss
processes. These parameters could be introduced to the model
to more accurately simulate experimental dynamics.
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