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Using simulations of the Ising model in three dimensions, we are able to find the magnetic ordering temperature of
lattices of varying geometries. We used the Monte Carlo Metropolis algorithm to simulate how the magnet moments
of the sites of the Bravais lattices evolve through temperature. With these simulations, we found data of specific heat,
Binder ratio, and the magnetic susceptibility as a function of temperature. Our roughly collected data resembled that
of precise existing computational data so we can further improve our results by making adjustments to our simulation.
This simulation may eventually accelerate the process of finding suitable materials for superconductors and finding the
properties of materials may no longer depend so heavily on the time-consuming experimental process.

I. INTRODUCTION

Condensed matter physics encapsulates the study of the
physical properties of matter and their electromagnetic inter-
actions on an atomic scale. These studies have paved the way
for the formation of new materials that have revolutionized
modern technology and civilization such as the discovery of
semi-conductors, highfield magnets, and giant magnetoresis-
tant materials, and during the last 200 years, chemists have
created new compounds at an exponential 4% growth rate
each year.1

However, all of these materials’ properties are not analyzed
at the same rate, and predicting which compounds will re-
sult in which properties is difficult to determine. The crystal
structure of the material is the first property to be determined,
but the determination of other physical properties lags behind.
Furthermore, it is hard to predict which materials will be mag-
netic, and finding the Curie temperature of a magnet without
finding it directly through experimentation is not straightfor-
ward. If we were able to narrow the search for magnetic ma-
terials, we could accelerate the process of finding candidates
for superconductors. The most interesting superconductors
have been discovered near magnetic instabilities, so finding
materials that contain these instabilities may allow us to find
superconductors with unconventional properties.

There have been attempts to make these predictions using
a relationship between the chemical composition and criti-
cal temperature by Nelson and Sanvito. The best of these
results produced discrepancies of about 50 K when calcu-
lated using machine learning techniques. Nelson and San-
vito grouped around 2,500 known magnets together according
to their chemical composition and input the composition data
and known Curie temperature data into a machine learning
system. This system recognized patterns in the data and was
able to predict Curie temperatures for magnets not input in the
system. However, they concluded that the best descriptor of a
material is the chemical composition so no other factors, such
as electronic structure calculations, were applied to potentially
improve the predictions.2

We now instead attempt to narrow this discrepancy of 50 K
by considering the geometry of the compound given by one of
the fourteen main Bravais lattices in 3-dimensions shown in

FIG. 1. The fourteen Bravais lattices in 3-dimensions. These geome-
tries are dependent upon the lengths of the sides a, b, and c, and the
angles between the edges α , β , and γ . The nearest neighbors are
the atoms which are closest in distance to the atom we’re looking at,
and each of the lattices will have a different set of nearest neighbors.
The fourteen lattices are organized into six distinct groups: triclinic,
monoclinic, tetragonal, orthorhombic, cubic, and hexagonal.3

Fig. 1. This geometrical approach groups materials by config-
uration and structure as opposed to which elements make up
the compound. We can simulate how the magnetic properties
of a material of a given geometry will evolve with temperature
by analyzing nearest neighbor interactions and how the num-
ber of nearest neighbors and the resulting interaction energy
varies with geometry. The goal of this research is to produce
structural criteria or patterns that dictate magnetic properties
through this simulation, and we can simulate this system using
the Monte Carlo Metropolis algorithm. This algorithm will al-
low us to approximate how materials change with temperature
as they would in nature by taking into account probabilities
and favorable energy configurations.
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A. Lattices & Structures of Materials

Materials are composed of a lattice structure of atoms, and
this structure can vary depending on the pressure and temper-
ature of the system. These lattices can be unstable or stable,
and the properties of the compound depend on this structure.
We can determine the lattice structure through different forms
of diffraction such as X-ray, neutron or electron diffraction.4

The lattice geometry is given by the spacing and angles be-
tween the atoms. These lattices have some form of periodicity
that is apparent in their configuration as shown in Fig 1. Along
with this, the periodicity implies that there is also translational
symmetry present along some axis in the lattice. All lattices
can be described using a unit cell or a base shape that can be
translated to create an entire tessellation.5 In 2D, this unit cell
is defined by two vectors and an angle in between them, and
this cell can be applied to every point or atom in the lattice.
Bravais lattices are made up of one unit cell repeated for the
entirety of the lattice size.

Magnetic materials specifically have their atoms’ spins
aligned in a distinct way which will vary with temperature.
This evolution through temperature can be approximated and
described by the Ising model through calculating probabilities
and determining the most energetically favorable configura-
tion of spins. Materials at temperatures above their magnetic
ordering temperature will have their spins aligned randomly
and these materials are not magnetic. When these materials
are cooled slowly, they will become magnetized as their spins
align in a specific periodic configuration. The material will
undergo a phase transition at the magnetic ordering tempera-
ture, also called the Curie temperature or critical temperature.

Iron, Nickel, and Cobalt, along with some rare earth ele-
ments, are the most magnetic elements on the periodic table.
Iron is found in two geometries: face-centered cubic (fcc) and
body-centered cubic (bcc). Both of these configurations have
a high number of nearest neighbors, fcc having 12 and bcc
having 8. Cobalt is found as fcc or hexagonal, both of which
have 12 nearest neighbors. Nickel is also in a fcc structure.

B. Ising Model

To simulate the process of finding a material’s Curie tem-
perature, we can simulate the Ising Model in 3-dimensions.
The Ising Model tells us how a material’s magnetic dipole
moments (spins) will configure themselves at a given temper-
ature. The model does this by taking into account the proba-
bility that a spin will be in a specific configuration due to its
interaction with its neighboring spins. The neighboring spins
allow the model to determine which configuration is energeti-
cally favorable.

At very high temperatures, a material’s spins will be ran-
domly aligned and the spins’ net alignment will be zero. At
high temperatures or when there is large amount of energy in
the system, the spins have an equal probability to be be in
any configuration or microstate. There are only two config-
urations for any given spin: spin up or spin down. Due to
all of the spins of a lattice having this equal probability, they

essentially become randomly aligned.
This probability is related to the partition function, Z. This

is given by Eq. (1), and is a sum of the Boltzmann factor at a
given energy level over all possible energy levels. In Eq. (1),
Ei is the energy at a given state i, β is 1

kBT where kB is the
Boltzmann constant, and T is the temperature.

Z= ∑
i

e−βEi (1)

With the partition function, we can find the average energy,
and the average energy is dependent upon the probability of
the atom or particle to be in that energy level. The probabil-
ity is given by the Boltzmann factor divided by the partition
function. This relationship is shown in Eq. 2 where P(Ei) is
the probability of the atom to be in that energy state.

〈E〉= ∑
i

EiP(Ei)

〈E〉= ∑i Eie−βEi

Z
(2)

As we decrease temperature, less energy is present in the
system so not all of the microstates will have the same equal
probability. This unequal probability leads the spins to want to
align in an energetically favorable configuration which takes
into account the spins of its nearest neighbors. If the neighbors
are all spin up, it is energetically favorable to align in the spin
up direction.

In the case of magnets, spins will align in the same direction
or a form of periodic arrangement. For example, ferromag-
netic materials have all of their spins in the same direction,
paramagnetic materials will have an induced magnetization in
the presence of a magnetic field, and anti-ferromagnetic ma-
terials will have a periodic pattern of spin up and spin down.
The nearest neighbor interaction is also defined by the interac-
tion energy, J. This describes the energy between two neigh-
bors at a certain distance so J for all of the nearest neighbors
will be the same value. In the case of ferromagnets, J > 0, and
in anti-ferromagnets, J < 0.

The temperature where there is a net magnetization or a ma-
jority of the spins become aligned and undergo the phase tran-
sition is the magnetic ordering temperature. We can find the
Curie temperature experimentally through measuring the spe-
cific heat, the intersection of the Binder ratio of different size
lattices, or the magnetic susceptibility, χ . The Binder ratio is a
dimensionless ratio of average magnetization which becomes
size independent at the Curie temperature. This means that for
any size lattice, we find that the value of the Binder ratio is the
same at the Curie temperature. For our simulations, this is the
most reliable way to find the Curie temperature because of its
lack of dimensions and exact finding of the Curie temperature.
The specific heat and magnetic susceptibility data will give us
a rough estimate of where the phase transition occurs, but it
cannot give us an exact value like the Binder ratio can.

The specific heat, C, is given by Eq. 3 where E is the energy
of the system. The Binder ratio, B, is given by Eq. 4 where M
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is the magnetization of the system, and magnetic susceptibil-
ity, χ , is given by Eq. 5.

C =
〈E2〉−〈E〉2

T 2 (3)

B =
3
2
− 〈M4〉

2〈M2〉2
(4)

χ =
〈M2〉−〈M〉2

T
(5)

II. COMPUTATIONAL METHODS

To be able to create this Ising model simulation, we primar-
ily used Python and FORTRAN, and we used the Monte Carlo
Metropolis algorithm to simulate how each spin would evolve
through temperature.

We can use the enumeration and partition function method
for small lattices as we can quickly find all of the microstates.
We can create either a chain or 2-dimensional lattice of up
and down spins represented by 1 and -1 respectively and then
find all the microstates of this system. The microstates are
the number of combinations of 1 and -1 we can have. The
number or microstates is given by 2N where N is the number
of spins. We could find the partition function and then for
each microstate, calculate and plot the average energy, specific
heat, and entropy as a function of temperature.

This enumeration technique has obvious limitations de-
pending on lattice size. A 4x4 lattice of 16 spins will have
216 or over 65,000 microstates. The time a computer takes
to perform these operations can be given by the multiplica-
tion of the number of microstates and the number of opera-
tions required to compute E, which is about 100, then divided
by the computer processing speed. In this case, it would be
(65,000)(100)/(3× 109). A household computer can actu-
ally compute a 4x4 lattice in less than a second, but for an 8x8
lattice with 64 spins, this would take 20,000 years to compute.

Given this, we become dependent on another method to
compute regular size lattices, and we can use Monte Carlo
techniques to simulate our lattice instead.

A. Monte Carlo Metropolis Algorithm

Monte Carlo algorithms can be used to measure physical
quantities as the output from these algorithms are similar to
those results found in nature. Most importantly, the algorithm
can find these quantities without finding a partition function.6

The algorithm utilizes random number generation and
probability to determine whether or not changes to the sys-
tem are accepted or rejected. The Metropolis algorithm was
created for systems with two or more interacting atoms.7 Our
implementation of the algorithm assumes periodic boundary
conditions on a finite lattice of N particles. Creating a lat-
tice with N = 106 for example is easy to do, and we can then
extrapolate N→ ∞ using the Binder ratio.

FIG. 2. A visualization of the process the Metropolis algorithm goes
through to either accept or reject a change to the system.

Specifically, our simulation creates a random 2D lattice of
size nxm containing elements of -1 and +1. Our simulation as-
sumes that β = 1 and J = 1. The initial energy of the system
is calculated using Eq. 6 where Ji j is the interaction energy
between two spins, i and j. Variable si is the value of the first
spin and s j is the value of the neighbor being evaluated. So si
and s j will only ever be±1. Since we are only looking at near-
est neighbors, the interaction energy for all nearest neighbors
will be the same, so we can factor this out of the summation
to result in Eq. 7. The total energy of the lattice is given by
this sum over every spin in the system.

E =−
N

∑
〈i, j〉

Ji jsis j (6)

E =−J
N

∑
〈i, j〉

sis j (7)

The algorithm begins by looking at one spin and flipping
the spin to opposite its original value. It then calculates the
change in energy, ∆E, by comparing the difference in energy
before and after the flip. With this change in energy, a proba-
bility is calculated using Eq. 8. This probability tells us if this
change is energetically favorable. This is not a true probabil-
ity because this value can be greater than 1, but it will only
be greater than 1 when the overall energy of the system is de-
creased by the flip.

P = e−∆E/T (8)

At this time, the simulation generates a random number be-
tween 0 and 1. If the random number is less than our proba-
bility, then the flip is accepted, and if the random number is
greater than the probability, the flip is rejected and reverted
back to its original configuration. Since our probability can
be greater than 1 in the case of a lower energy state, these
flips are always accepted. Once the flip is either accepted or
rejected, we move on to the next spin in the lattice and repeat
this process. This can also be shown in the flowchart in Fig. 2.
After sufficient sweeps of going through the lattice that was
originally randomized, we find that the spins align as temper-
ature decreases and we see groups of spin up and spin down
which resemble ferromagnetic domains!

It is important to note that even though a site may be sur-
rounded by spins of the same alignment, and the energetically
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FIG. 3. Ten thousand sweeps of a 16x16 and 24x24 size lattice using
the Monte Carlo simulation. The dotted line represents the known
Curie temperature for comparison to the peak value of the curve. It
can be seen that the 24x24 lattice is noisy and it would be difficult to
extract the peak of the curve with only this data. This data took an
hour and thirty minutes to collect in Python.

favorable position would be to stay aligned, there is still a
small probability that the flip will be accepted in the opposite
direction.

Every time the simulation goes through all points in the lat-
tice, this is one sweep. When moving onto the next sweep,
we use the final lattice of the previous sweep as the original
lattice of the next sweep. At the end of a given number of
sweeps, we decrease the temperature and repeat using the fi-
nal lattice once more. With each temperature, we measure the
energy and magnetization and keep track of how these values
change through temperature and flips. The energy is kept as a
running update of the original energy; we subtract the change
in energy if the flip is accepted or it stays the same if rejected.
We measure magnetization by summing up all of the spins in
the lattice.

When we run this simulation, we find the same results from
that of the enumeration technique. Because of this, the num-
ber of operations and iterations of the program is lessened, and
we can do much larger lattices. However, if we do not perform
a sufficient number of sweeps through the lattice, our data will
be noisy and inaccurate. An example of this is shown in Fig. 3
and Fig. 4. It can be seen that with only 1,000 sweeps through
the lattice, the proper shape is present, but without context, it
would be difficult to determine where the peak is.

B. Efficiency in Python

Even with 10,000 sweeps of a lattice, we would ideally
need 100,000 sweeps for most accurate data. However, al-
though Monte Carlo is more efficient than enumeration, we
find that the coding language Python is not equipped well
enough to be able to handle this number of sweeps.

We found that determining the neighbors of each site as
we go through the lattice is time consuming. Our program
had referred back to a function to find the four surrounding

FIG. 4. One thousand sweeps of a 16x16 and 24x24 size lattice us-
ing the Monte Carlo simulation. It can be seen that while this data
has the expected shape, there was an insufficient number of sweeps
through the lattice so the data is too noisy to be able to be used or
analyzed.This data took ten minutes to collect in Python.

neighbors in the case of a square lattice, and the act of call-
ing back to this function, regardless of how complicated the
function is, makes the code run that much more slowly. Sim-
ilarly, we found that calculating the random numbers as we
need them is inefficient. For both of these issues, we find that
pre-calculating the neighbors and random numbers eliminates
this issue. So we create a neighbor table for all directions in a
lattice that contain the location of say the north neighbors in a
list. We also would have a list of all of the random numbers.

We also found that we actually don’t need to sweep through
every single lattice point to be able to simulate our lattice. In
the original Metropolis paper, they note that we should instead
perform a random sampling of points in the lattice. This gives
us the same result as if we had gone through every point.

Despite these changes, we ultimately transitioned our codes
to FORTRAN, a computer language that can perform the same
computations much more efficiently without these numbers of
workarounds.

III. RESULTS & INTERPRETATION

When finding the Curie temperature, TC, we first want to
ensure that our simulation works by comparing our output to
known data. To do this, we ran a simulation of four different
size lattices of the simple cubic in 83, 123, 163, and 203. This
was run roughly to see if we would get the desired shape and
to acknowledge any errors or bugs in the code before mov-
ing onto the next Bravais lattice with an unknown TC. The
simple cubic lattice has 6 nearest neighbors and a known TC
of 4.51 K·J. This isn’t in terms of temperature, but instead a
fraction dependent on the interaction energy. Our results for
specific heat, Binder ratio and magnetic susceptibility can be
seen in Fig. 5, Fig. 6, and Fig. 7. The number of nearest neigh-
bors or coordination number of some of the Bravais lattices is
shown in Table I.

We can see that this data, although rough and imprecise,
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Bravais Lattice # of Nearest Neighbors
Simple Cubic 6

Face-Centered Cubic 12
Body-Centered Cubic 8

Triclinic 2
Primary Monoclinic 2

Base-Centered Monoclinic 4
Hexagonal 12

TABLE I. The number of nearest neighbors and the corresponding
lattice. Not all of the data has been collected yet, and neither have
the number of nearest neighbors. It can be seen that both triclinic and
primary monoclinic have 2 nearest neighbors, so there is no distin-
guishing factor between the two lattices in the simulation as it stands.

FIG. 5. The specific heat as a function of temperature of a simple
cubic lattice with a coordination number of 6. The dashed line repre-
sents the known value for TC. The specific heat should peak around
TC, but not peak on the exact value, so this result matches well. We
also see that as the lattice size increases, the peaks approach TC.

FIG. 6. The Binder ratio as a function of temperature of a simple
cubic lattice with a coordination number of 6. The dashed line repre-
sents the known value for TC. Since Binder ratio is size independent
at TC, we should find an intersection of different size lattices at this
point. We see a crossing around the dashed line which we can as-
sume would have matched well with a more precise run of data with
a smaller change in temperature.

FIG. 7. The magnetic susceptibility as a function of temperature of
a simple cubic lattice with a coordination number of 6. The dashed
line represents the known value for TC. The magnetic susceptibility
should peak around TC which this data does.

FIG. 8. The specific heat as a function of temperature of a base-
centered monoclinic lattice with a coordination number of 2. The
specific heat should peak around TC, so we can see that TC may be
between 2 and 3 K·J.

does match the theoretical value. When measuring the specific
heat and magnetic susceptibility, we expect a peak around
the Curie temperature, so this data is good for showing the
approximate range where TC occurs. However, because the
Binder ratio is size independent at TC, a very precise run of
several sized lattices with the same parameters should produce
a graph showing an intersection at the Curie temperature. This
is our most exact way of determining TC.

Knowing that the simple cubic simulation produced values
we expect, we can be sure that our code works and can be
applied to the other lattices. When running the simulation for
the base-centered monoclinic, we result in the data shown in
Fig. 8, Fig. 9, and Fig. 10.

For the base-centered monoclinic it can be seen from the
data that the Curie temperature occurs around 2 K·J. To find
the exact value, we will need to run more sweeps of the lattice
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FIG. 9. The Binder ratio as a function of temperature of a base-
centered monoclinic lattice with a coordination number of 2. We see
a crossing between 1.75 and 2.25 K·J.

FIG. 10. The magnetic susceptibility as a function of temperature of
a base-centered monoclinic lattice with a coordination number of 2.
The magnetic susceptibility should peak around TC, so this shows us
that TC may be between 1.75 and 2.5 K·J.

in the simulation. From this data, though, we are able to see
trends and now we have a rough idea of where the Curie tem-
perature is, so there is less guessing involved when we refine
the simulation.

For both sets of data, more precise measurement is neces-
sary. These were taken with 100,000 sweeps at a temperature
increment, dT, of 0.1 K. This causes us to have large gaps
at important data ranges like that of the Curie temperature.
When rerunning this simulation, we will want to take more
data points and for more sweeps at each temperature.

Similar graphs can be created for for the other 12 Bravais
lattices. The data produced from the primary monoclinic sim-
ulation shows a Curie temperature around 1 K·J. While this
isn’t anything more than an estimate at this stage, it is inter-
esting to note that lattices with more neighbors are showing to
have a higher Curie temperature than those with fewer neigh-
bors. This is a promising trend if we want to correlate the

coordination number to the properties of the material.

IV. CONCLUSIONS

The only parameter that changes in the simulation when
run for different Bravais lattices is the nearest neighbors that
are input. We input a neighbor table that contains all of the
directional information for the array to be able to select the
neighbors in the energy calculations. The simulation will out-
put the data of our physical quantities we are trying to find.
An advantage and limitation of our simulation is that our pro-
gram is only dependent on the number of neighbors a site has.
So, as our simulation is currently written, regardless of which
neighbors a site has, that lattice will always produce the same
result as another lattice with the same coordination number.
To be able to distinguish between two Bravais lattices with the
same coordination number, we need to add secondary neigh-
bors that will have a different corresponding interaction en-
ergy.

Additionally, to advance our simulation, we can add uni-
axial pressure variation to the system and vary the interaction
energy with this to see how the properties change. Adding
pressure may increase the interaction energy since the spins
would then be closer together.

Although this work is still in progress, we are able to see
that our simulation of the Ising model using the Monte Carlo
Metropolis algorithm produces results to find the Curie tem-
perature of the different Bravais lattices. With future work re-
fining the simulation to get more precise data, we will be able
to find the Curie temperature with less of a range of error.
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