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We examine a system of molecules in one real space dimension and one ‘synthetic’ dimension of
rotational states. These molecules occupy one real site and can move between rotational states,
while also interacting with one another via dipole interactions, or angular momentum exchange
between adjacent sites. The system is simulated using a world-line quantum Monte Carlo model to
examine a phase change at different dipole interaction strengths for a much larger system size than
previously explored. The current status of this ongoing work is described.

I. EXPERIMENTS WITH COLD ATOMS AND
MOLECULES

For many years, physicists in the field of atomic, molec-
ular, and optical (AMO) physics have done experiments
using cold atoms. These atoms are cooled to nano-kelvin
temperatures with laser cooling techniques and used in
experiments to probe a variety of fundamental physi-
cal phenomena [1]. Cold temperatures allow quantum
mechanical properties to dominate the experimental sys-
tems. From investigating many body quantum problems,
to probing high energy questions in the search for dark
matter, such experiments have provided the opportunity
for advancement in many fields of physics.

Possibilities for new science also emerge in the frontier
of ultra-cold molecules given that molecules are the build-
ing blocks for materials [2]. Molecules are more difficult
to cool than atoms because of their many more rotational
and vibrational degrees of freedom. In the past few years,
first diatomic and now polyatomic molecules have been
cooled and used to study molecular quantum interactions
as well as condensed matter systems.

A. Quantum Simulation

One category of experiments done in AMO is that of
quantum simulation. These are experiments in which
atoms or molecules are manipulated such that con-
densed matter systems can be studied through analogous
physics. Often, these experiments are done by forming
an optical lattice with interfering laser light that repre-
sents a crystal structure in a material. An example of
this is demonstrated in figure 1 where atoms and their
interactions in the optical lattice represent electrons and
their interactions within a crystal. In an optical lattice,
one can control the amplitude and frequency of the lasers
used and thus also the potential in which atoms sit and
the spacing between them [1]. Thus, quantum simulation
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has an advantage in parameter control over condensed
matter experiments when looking at the same system.

FIG. 1. As pictured here, cold atom systems in optical lat-
tices (right) can be used to simulate condensed matter sys-
tems (left). Interfering lasers create a potential landscape in
which atoms interact as electrons would in the potential land-
scape of a crystal. Such a scheme provides direct control over
parameters such as lattice spacing and potential depth. image
credit: Kozuma Laboratory, Tokyo Institute of Technology

One disadvantage when using quantum simulation
techniques is that the lattice created is not as large as
physical crystal lattices which can be approximated to
be infinite. Thus, finite size effects can at times limit the
insight that AMO experiments provide.

B. Synthetic Dimensions

Quantum simulations can also be used to study prob-
lems not in real space but in different, ‘synthetic’ dimen-
sions, such as momentum space. One or more synthetic
dimensions can be used in combination with a real space
dimension to actualize a given Hamiltonian. In figure 2,
one can see an example of a lattice which uses one syn-
thetic dimension and one real dimension to simulate a
two dimensional lattice. Synthetic dimensions can allow
an experimental apparatus to simulate experiments with
higher dimensionality, and in some cases can allow them
to address the problem of finite system size limitations.
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FIG. 2. An example is given of how a synthetic dimension can
be used with a real dimension to increase the dimensionality
of a system. This ‘synthetic’ dimension can be any parameter
useful to the experiment, and so the potential wells in this axis
are not in real space. image adapted from: Porto Laboratory,
Joint Quantum Institute

The use of rotational states in molecules as a synthetic
dimension is the focus of this paper. One can use a
one-dimensional row of stationary molecules along with
their rotational states to create a two-dimensional lat-
tice. Such a system uses the rotational states of molecules
for experimental advantage despite the associated disad-
vantages for molecular cooling. This system addresses
system size limitations that plague typical AMO quan-
tum simulations because molecules have hundreds of ro-
tational states.

II. HAMILTONIAN AND EXPECTED
DYNAMICS

In a Scientific Reports paper published in 2018 [3] and
a Phys Rev A paper in 2019 [4], groups at Rice Univeristy
and at the University of Illinois at Urbana-Champaign
propose a molecule experiment that utilizes one synthetic
dimension as shown in figure 3, where t is the strength
of the hopping term for a molecule between rotational
states in the synthetic dimension, and V is the strength
of dipolar interaction, or angular momentum exchange
between adjacent molecules. In order to conserve an-
gular momentum, this exchange is restricted to directly
swapping rotational states, and for simplicity in address-
ing these transitions with lasers, it is also restricted to
adjacent rotational states.

The system was studied using exact diagonalization
techniques, mean field approximation [3], and matrix
product state [4]. The Hamiltonian that describes this
system of molecules follows.

Ĥ =

Mreal−1∑
i=0

Nrot−1∑
n=1

[
− tn

(
ĉ†n−1,iĉn,i

)
−Vn

(
ĉ†n−1,iĉn,iĉ

†
n,i−1ĉn−1,i−1

)]
+ h.c.

(1)

A phase, dubbed ‘quantum string’, was found to
emerge when the ratio of V/t was negative or greater

FIG. 3. This image is a visualization of the Hamiltonian in
equation 1. There is one molecule per real site, which moves
between its synthetic rotational states with hopping term t.
Angular momentum can be exchanged with strength V , only
by molecules in adjacent real states and adjacent rotational
states. image credit: [4]

than 2 as seen in figure 4. A similar ‘quantum surface’
is found when extending the proposed lattice to three-
dimensions, where two of these are real dimensions, and
one is a synthetic dimension of rotational states.

FIG. 4. This figure demonstrates the dependence of the phase
on the ratio of V/t. At negative values and large positive
values of V/t, a ‘quantum string’ forms, and the dipolar term
in the Hamiltonian dominates interactions. image credit: [4]

While such current strategies have predicted this phase
and looked at particular approximations, the exact sys-
tem has not been studied for large system sizes because
the computation time for exact diagonalization tech-
niques scales as 2N where N is the number of lattice
sites. Thus, the potential of using rotational states in
molecules for a synthetic dimension to increase system
sizes in AMO experiments has not been fully examined.
Quantum Monte Carlo techniques, which will be pre-
sented later, scale as N2 and allow us to study larger
system sizes and encompass the potential benefits of such
an experiment.

III. EXACT DIAGONALIZATION

While the Hamiltonian in equation 1 has already been
studied using exact diagonalization techniques, the same
studies are replicated for comparison to quantum Monte
Carlo (QMC)calculations. This code will be used to
check the QMC code for small system sizes and will also
be used to demonstrate the differences between results
predicted for phases of different lattice sizes.

In figure 5, the probability for a molecule to occupy
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FIG. 5. We use exact diagonalization techniques to demonstrate the occupation probability for increasing values of V/t in a
four by four lattice. Warmer colors show a higher probability and cooler colors show a lower probability as indicated in the
scale to the right. A two-state-wide ‘quantum string’ is seen to form as values of V/t increase.

each site in a four by four lattice is graphed for different
ratios of V/t. One can see a ‘quantum string’, made of
two rotational sites, emerging and becoming more pro-
nounced for larger values of V/t as predicted.

IV. MONTE CARLO METHODS

Monte Carlo methods allow us to do what we can call
‘computer experiments’. This emphasizes the idea that
the output of a Monte Carlo algorithm replicates prop-
erties of a system at thermal equilibrium, and that these
methods allow researchers to probe problems that do not
have analytic solutions [5]. A Monte Carlo simulation,
like nature, provides configurations that we can ‘mea-
sure’, where each configuration has a particular proba-
bility of occurring. While Monte Carlo methods do in-
corporate randomness, they have a rigorous mathemati-
cal basis which creates rules that, when followed, allow a
configuration i to evolve to a configuration j with the cor-
rect probability [5]. These rules include ergodicity, which
requires a non-zero probability for every configuration to
be reached from every other configuration. Another rule
requires the algorithm to satisfy ‘detailed balance’, where
a probability, Tij , of evolving state i to state j, is chosen
such that when a configuration i evolves to a configura-
tion j, it satisfies

Tjipi = Tijpj (2)

where pn is the probability of a state n. One algorithm
that obeys these rules is the Metropolis algorithm, which
is used in the rest of this paper. The Metropolis algo-
rithm accepts a change of configuration from i to j with
probability one if pj/pi > 1 and with probability pj/pi if
pj/pi < 1.

A. Monte Carlo Steps

In practice, the steps in a Monte Carlo simulation take
the current configuration, and suggest a change to that
configuration. This change is either accepted or rejected
according to an algorithm which satisfies the rules dis-
cussed in the previous section. This process is repeated
until equilibrium is reached, and then measurements can
be made of desired quantities.

FIG. 6. The measurement is presented from a quantum Monte
Carlo algorithm for the potential energy of a quantum har-
monic oscillator for up to 500,000 steps. One can visualize
here how a Monte Carlo simulation reaches equilibrium.

In figure 6, one can see a Monte Carlo simulation for
the potential energy of a quantum harmonic oscillator,
which begins at an arbitrary energy value and then takes
steps until it nears equilibrium beginning around 200,000
steps. As is visible in this graph, this is not a monotonic
process. After around 200,000 steps , one could measure
the system and take an average of measurements in order
to obtain a predicted value for the potential energy.
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B. Quantum Monte Carlo

In order to address quantum mechanical systems with
classical Monte Carlo methods, one must map an n di-
mensional quantum problem to an n+1 dimensional clas-
sical problem [6]. The formalism that allows for this
mapping comes from Feynman’s path integral formula-
tion of quantum mechanics which provides a connection
to classical statistical mechanics [6]. This formulation of
quantum mechanics describes a particle as sampling all
possible paths when traveling between two locations in
time and space, and generalizes the classical use of ac-
tion. Using tools provided by a Euclidean or imaginary
time approach, one can write the partition function

Z = 〈xf |e−Hτ/~|xi〉 ∼
∫
e−S(x)/~dx (3)

where S(x) can be written as

S =

∫ T

0

dτ
(1

2
m0

[dx
dτ

]2
+ V (x)

)
. (4)

Here, imaginary time τ = it, where t is classical time. We
see that this integral sums over imaginary time which
is equivalent to inverse temperature. Quantum Monte
Carlo simulations are performed at a finite temperature
T corresponding to a finite β. Paths are sampled in imag-
inary time with different probabilities for each path. Af-
ter many iterations, an equilibrium state is reached and
pertinent quantities can be measured.

1. World-line Quantum Monte Carlo

For bosonic systems, there is a direct generaliza-
tion from Monte Carlo simulations to quantum Monte
Carlo systems as described above. However, the anti-
commutative nature of fermionic operators complicates
quantum Monte Carlo for fermionic systems [7]. Here we
focus on World-line quantum Monte Carlo (WLQMC),
a method that addresses this problem particularly for
Hamiltonians in one real dimension and one imaginary
time dimension.

WLQMC requires splitting the Hamiltonian that is be-
ing studied into commuting pieces that sum to the full
Hamiltonian. Thus, if different pieces of the Hamilto-
nian act on a fermionic world-line at different time steps,
a Hamiltonian that is split into two pieces can be rep-
resented as a checkerboard, demonstrated in figure 7.
Shaded squares determine areas in which fermions can
interact in space and time on each time slice [7]. As a
result, when moves are made to sample different config-
urations, or when equivalently, world-lines are ‘pulled’,
world-lines can diagonally cross shaded squares but re-
main on the edge of unshaded squares. The probability
for a move to be made is the product of the four matrix el-
ements corresponding to the populations of the pertinent

FIG. 7. Here, a world-line quantum Monte Carlo algorithm is
visualized. The vertical axis, τ , represents inverse tempera-
ture and the horizontal axis, n, represents spatial steps. The
shaded squares represent two commuting pieces of a Hamilto-
nian in one real dimension and one time dimension. The bold
lines represent fermionic ‘world-lines’ which are pulled across
white squares to sample all paths. image credit:[7]

square in the checkerboard. Sampling different configu-
rations according to these rules allows for every configu-
ration to be reached, and each path to contribute to the
weighted sum. Thus, an equilibrium can be reached.

V. WLQMC FOR MOLECULES IN
ROTATIONAL STATES

We used WLQMC to examine the Hamiltonian pre-
sented in equation 1, describing molecules in one spa-
tial dimension and one synthetic dimension of rotational
states. As previously explained, WLQMC is most used
for fermionic systems whose world-lines can be repre-
sented in one real space dimension, and one inverse tem-
perature dimension. At first glance, this criterion does
not seem to apply to the Hamiltonian. However, each
molecule only occupies one position in real space and can-
not exchange location. This allows us to draw individual
checkerboards for each molecule which can move only
between rotational sites. Thus, the world-line for each
molecule remains in a separate rotational space-inverse
temperature plane even as it is pulled to sample all con-
figurations.

As described in the previous section, the Hamilto-
nian was split into commuting parts. In this case, due
to the angular momentum exchange available between
molecules in adjacent sites, the Hamiltonian was split

into the following four pieces, where we define
Hi,n

2 =

− tn2
(
ĉ†n−1,iĉn,i

)
− Vn

2

(
ĉ†n−1,iĉn,iĉ

†
n,i−1ĉn−1,i−1

)
+ h.c.

Ĥ1 =
∑
i odd

∑
n odd

Hi,n

2

Ĥ2 =
∑
i odd

∑
n even

Hi,n

2

Ĥ3 =
∑
i even

∑
n odd

Hi,n

2
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Ĥ4 =
∑
i even

∑
n even

Hi,n

2

We note that Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 = Ĥ, as is necessary,
and that each piece commutes with the others. For each
molecule, its world-line moves in a checkerboard (figure
8) made of the four pieces of the Hamiltonian, where
the fermion can interact on shaded squares but not on
unshaded squares. Although the checkerboard for each

FIG. 8. Checkerboard for a single spatial site, which will
contain one world-line, or one molecule. Here, n represents
rotational states, and τ represents imaginary time steps.

FIG. 9. Commuting pieces of the Hamiltonain are depicted
in 3D where n is rotational states, i is spatial states, and τ
is imaginary time slices. The colors corresponding to Ĥm are
determined by the key in figure 8. Fermionic world-lines are
confined to slices in the real space i direction and can only
exchange angular momentum with whichever molecule may
share the adjacent box corresponding to the given time slice.

molecule appears identical, and each molecule remains in
one spatial site, the dipolar term does connect adjacent
molecules. Therefore, for example, Ĥ1 may connect site

i to site i − 1, but then it will connect another site j
to site j + 1 depending on the parity of the state. As a
result, the slices that confine the molecules form boxes
which one can depict in three dimensions as in figure
9. While molecules are confined to world-lines on their
respective faces, angular momentum can be exchanged
between sites connected by a box.

The matrix probabilities, analogous to the Tij in equa-
tion 2, for a state to change correspond to the changing
occupation on boxes adjacent to the one or two world-
lines that move depending on whether the hopping term
or the dipolar term acts to reach a new configuration. If
only the hopping term acts, only one world-line moves
and 4 adjacent boxes are affected. If the dipolar term
acts, two world-lines in adjacent sites will move. The
two world-lines that switch positions on opposite faces of
one box either share 1 or 3 additional adjacent boxes. In
this algorithm, therefore, there can be 4, 5, or 7 matrix
elements that change with one move. As previously men-
tioned, each change is accepted or rejected based upon its
probability determined by the product of the matrix el-
ements being discussed, using the Metropolis algorithm.

VI. CURRENT STATUS

This is an ongoing project that the author is continu-
ing with Professor Richard Scalettar. Data have not yet
been acquired from the WLQMC algorithm, and we are
troubleshooting the code. Despite this, results from the
exact diagonalization code, such as those for energy at
different ratios of V/t in figure 10, promise to be use-
ful for comparison with results to be acquired from the
WLQMC code.

FIG. 10. After the algorithm is completed, we will compare
the world-line quantum Monte Carlo results to exact diagonal-
ization results for different lattice sizes and different measured
quantities. Pictured here are exact diagonalization results for
Energy vs Temperature.
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