Spin Waves in a Honeycomb Dimer Antiferromagnet with XY symmetry
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A recent experiment showed that the strongly spin-orbit coupled quantum dimer magnet Yb28i207 observes
four distainct quantum phase under an external magnetic field including an XY symmetry broken phase. Such
a phase is associated with the Bose—Einstein condensation of magnons. We attempt to reproduce the phase
diagram from a model assuming nearest neighbor Heisenberg interactions using spin wave theory. We describe
three distinct quantum phases: a quantum dimer magnet, an XY Néel state, and a fully saturated paramagnetic
phase. Our analysis is complemented by results from a numerical Linked Cluster expansion and Density Matrix
Renormalization Group simulations. We conclude that XY symmetric interactions are unlikely to contain the
full physics of the magnet as such a model can only contain three phases.

I. INTRODUCTION

In the past few years, there has been a surge in interest in
the ground states of antiferromagnetic materials due to their
potential to display unique quantum properties. The proper-
ties of these magnets have been shown to be well described
by models of localized spins where the breadth of phenomena
is explained by the competition between different interactions
in the ground state.

One such phenomenon is the existence of XY symmetry
broken phases in otherwise XY symmetric models. This oc-
curs in certain materials where the antiferromagnetic interac-
tions are forced to compete with a large polarizing magnetic
field. This phenomenon, associated with the UU(1) symmetry
breaking of magnetic excitations, has been termed the Bose—
Einstein condensation of magnons [1]. For it to occur, a very
large applied magnetic field takes the place of a chemical po-
tential and the magnetic moments are forced to cant in a plane
orthogonal to the XY plane, breaking U(1) symmetry. There
are three quantum phases in this paradigm: a phase dominated
by local order contiguous with the zero field ground state at
low fields such as a quantum dimer magnet (QDM), a fully
polarized phase at high fields, and a Bose condensed phase
with in plane canting at medium fields.

Recently, an experimental paper has challenged this
paradigm by discovering a fourth quantum phase between the
symmetry-broken and polarized phases [2]. A model that
strongly breaks XY symmetry is not expected to display any
phase between the low and high field limits, however an XY
symmetric model is expected to only contain the three phases.

In this work, we examine the extent to which the newly
discovered Yb2Si207 can be described by nearest neighbor
Heisenberg or XXZ interactions. We completed our analy-
sis using spin wave theory, a numerical linked expansion, and
a DMRG simulation. We hypothesize that Yb2Si207 must
contain perturbations to the nearest neighbor interactions of
the Heisenberg model that weakly break the XY symmetry.

II. MODEL ANTIFERROMAGNET

Reference [2] describes a QDM in the distorted honeycomb
lattice magnet Yb2Si207. The 3 dimensional material can
be pictured as sheets of two dimensional honeycomb lattices

stacked on top of one another. From this picture, it is sufficient
to consider a single 2 dimensional lattice to understand the
ground state phase diagram.

We keep three experimental considerations in mind for our
starting point. In reference [2], it was shown that the zero
field specific heat data for the quantum dimer magnet is well
described by nearest neighbor Heisenberg interactions. The
magnet exhibits a fully polarized phase at high fields. It was
also shown that the magnet hosts an approximate Goldstone
mode with gap less than 0.037 meV. From this we conclude
to start with a nearest neighbor Heisenberg model with dimer
interactions, shown in Figure 1.

FIG. 1: We assume a model of nearest neighbor Heisenberg interac-
tions. Intradimer coupling is .J; and interdimer coupling is .J2. Since
J1 > Ja, the ground state in zero field is a product state of singlets
on the red bonds.

This decision is justified by all three considerations. It
makes sense to start from a model that is approximately valid
in low fields and exhibits a polarized phase at high fields. Ad-
ditionally, its XY symmetry makes it a candidate for Bose—
Einstein condensation of magnons [1].

In a magnetic field, our Hamiltonian is

H=—hY Si+1 > Si-Sj+J2 Y 8i-8 (1)
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where we will set the spin to S = % only when comparing
to data and otherwise leave S abstract to facilitate with spin



wave perturbations. The term £ is proportional to the applied
magnetic field and physical values for the gyromagnetic fac-
tors will be inserted when necessary for making comparisons
to experiment. The set of bonds, A refers to intradimer bonds
with the complement of A being interdimer bonds. Finally,
the distortion is taken into account by the two parameters .J;
and .J; where J; = J,.

III. SPIN WAVE ANALYSIS
A. Dimer Phase

At low fields, the ground state is in the S7, = 0 sector.
Considering .J5 to be much smaller than .J;, this state is dom-
inated by singlets on the dimerized pairs. The energy bands
at zero field can be computed perturbatively in .J» using a Nu-
merical Linked Cluster Expansion [3]. By identifying the zero
field energy gap we can directly extrapolate the band crossing
from doping the S* = —S sector with an external magnetic
field, since spin quantum number is respected. We find that
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Inserting the spin, gyromagnetic factor, and experimentally
measured couplings from reference [2] returns h.; = 0.43
Telsa which is in strong agreement with the experimentally
reported value of 0.4 Tesla.

, b
hei = S (Jl —Jo—J3+ J;‘) 2)

B. Paramagnetic Phase

As our Hamiltonian commutes with the spin-z operator, at
high enough fields, the ground state must simply be a pure po-
larized state. The zero magnon sector hass S, = 25N. We
wish to find at what field the gap to the single magnon sector
closes, then. We expand our Hamiltonian in the ladder oper-
ators and treat the S~ operators as excitations, equivalent to
non interacting hard core bosons on a lattice. This Hamilto-
nian is exactly solvable via Fourier transformation and two by
two matrix diagonalization. We find the energy gap to be

AE = Sh —28%(J; + 2.J2) 3)

yielding an upper critical field of

heo =25 (J1 + 2J3) (4)

Inserting the spin, gyromagnetic factor, and experimentally
measured couplings from reference [2] we find the critical
field to be 1.42 Tesla, nearly identical to the reported 1.4 Tesla.

Since, in this phase, magnons are non interacting, all sec-
tors of N and fewer magnons all mix with the ground state at
the phase transition. This is in perfect analogy with a conven-
tional Bose-Einstein condensation transition in which particle
number conservation is violated in the thermodynamic limit

[1].

C. XY phase

Our starting point for the spin wave analysis of the XY
phase is the ground state of our Hamiltonian for classical
spins. Without loss of generality we can assume the spins
order in the x-z plane from U(1) symmetry breaking. Letting
¢ be the angle of each spin from the z axis, using equation 1,
the energy is

E.(¢) = —2NShcos(¢) + N cos(2¢)(J1 +2J2)  (5)

and minimizing ¢, the spins cant with angle
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cos @ =
where we find the magnetization saturates at the upper crit-
ical field.

The details of the spin wave calculation are in direct anal-
ogy with reference [4] but are summarized in the following
paragraphs. To proceed, we upgrade from classical to quan-
tum spins, but in a frame where the local z axis at each site
is canted at an angle ¢. The rotated spin operators may
be mapped to bosonic operators via the Holstein—Primakoff
transformation. The resulting Hamiltonian is insoluble, how-
ever, may be solved perturbatively in powers of % The zeroth
order Hamiltonian is conveniently quadratic.

To solve the Hamiltonian to quadratic order, we force the
first order term to vanish by setting the canting of the axis to
be the classical canting angle of the spins. After Fourier and
Bogoliubov transformations, we find the energy bands to be
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where - is the lattice harmonic

Y(k) = Jie® 0 4 Jy (e 02 4 eth02) (8)

The band structure is shown in Figure 2 for simple hexag-
onal symmetry. A few things can be observed from this band
structure. As expected from the U(l) symmetry breaking,
there is a Goldstone mode. Additionally, there are band cross-
ings at the edges of the Brillouin zone that are not linear along
all paths, thus are not Dirac points. The band structure is in
strong numerical agreement with the results from the neutron
scattering experiment in reference [2] when £ is close to 0.
Agreement is weaker close to f.;. This should be expected as
the classical model from which we are expanding is not aware
of the dimer phase for low fields as we have explicitly broken
XY symmetry in the canting.

1. Comparison to Neutron Scattering

Reference [2] measures the energy bands using inelastic
neutron scattering. Directly comparing the energy bands to



FIG. 2: Energy bands in the XY phase. There is a Golstone mode at
the origin and a pair of band crossings at the vertices of the Brillouin
zone.

the results of linear spin wave theory within the dome, pro-
vides a good agreement between theory and experiment. Ad-
ditionally, however, the scattering rate is proportional to the
dynamic structure constant. This quantity, defined as the
space time Fourier transform of a generic two point function,
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can be calculated directly from linear spin wave theory,
where the expectation value is taken with respect to the band
that is being scattered off. The result depends on the lattice
geometry as well as the hyperbolic trigonometry of the Bo-
goliubov rotations used to solve the model. In general we
found good agreement between linear spin wave theory and
experiment.

2. Anisotropic Coupling

One potential question to ask is the role of anisotropic cou-
plings on the spin wave analysis. There is only one anisotropy
that doesn’t break the symmetries of the Hamiltonian so we
chose to consider an XXZ coupling of the form

Hij o< NSESF + STST + SYSY (10)

where A = 1 reduces to the Heisenberg case. Since the
symmetries were not changed, the qualitative aspects of the
results were not different. However the critical field

hf_.g = {]. + /\}S (Il + 2)72) (] 1)

and energy bands
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are renormalized. Tuning A, however, does not significantly
improve the agreement with experiment in either the phase
transitions or the scattering calculation. Thus we assume that
there is little to no XXZ anisotropy within the material.

3. Nonlinear Spin Waves

To go beyond zeroth order in the % expansion we need to
include cubic and quartic terms from the Hamiltonian. This
can be done within the Holstein—Primakoff formulation via a
Hartree—Fock decoupling of the fluctuating pieces of higher
order terms. Ultimately, a complete calculation of the first or-
der correction proved too difficult and likely irrelevant. How-
ever, to report one result from the first order correction, the
canting angle is renormalized as

h n—m-—2~A
— 14+ — 13
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where n is the average Bose occupation, m is the aver-
age hopping parameter and A is the average annihilation pa-
rameter of the Holstein—Primakoff bosons. These parameters
must be calculated self consistently from quadratic and quar-
tic pieces of the Hamiltonian. However, one may note that as
h approaches h.o, these parameters should be expected to go
to zero as the model fully polarizes and no excitations exist.
This would hold true to all orders in the % expansion as the
Hartree—Fock calculation can only return corrections in terms
of these averages. Thus we conclude that the Heisenberg (or
XXZ) model only contains three quantum phases and does not
capture the full physics of the material.

cos(¢) =

D. Comparison to DMRG

In order to test the accuracy of the zeroth order % ex-
pansion, we compare our magnetization results from linear
spin wave theory magnetization to a DMRG simulation of
55 electrons for the Heisenberg model. DMRG simulations
can converge very quickly for calculating one point functions
like magnetization [5]. However, a complete analysis would
also study the two point functions in order to compare more
deeply with experimental results. The magnetization results
are shown in Figure 3.

Since linear spin wave theory assumes a symmetry broken
state, it has no predictive validity in either the polarized phase
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FIG. 3: Magnetization ({S%}) vs applied field (h) for the model in
equation 1. Orange dots: DMRG data, blue dots: linear spin wave
theory, red line: classical spins. The DMRG result shows all three
phases predicted. The linear spin wave theory occurs in good agree-
ment with the DMRG result near the upper phase transition but not
near the lower one as it misses the dimer phase entirely.

or the dimer phase. However, the DMRG simulation shows
excellent agreement with theoretical calculations for the loca-
tion of both transitions with no magnetization below h,.; and
full polarization above h.o. Between these two phase transi-
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tions linear spin wave theory shows a large range of validity
close to h.p and breaking down near h.;. Ultimately, both
techniques agree on the location of h.o thus are in general
agreement.

IV. CONCLUSION

Through several theoretical techniques, we have described
the ground state phase structure of the dimerized quantum an-
tiferromagnet with XY symmetry on a honeycomb lattice in
a magnetic field. Since our results only contain three phases,
we must conclude that an XY symmetric model cannot cap-
ture the full physics of the material. However, the zero field
ground state of the magnet is a quantum dimer magnet, thus
the XY breaking terms must be small enough not to break this
structure. Additionally, since reference [2] observed a Gold-
stone mode to within 0.037 meV, any breaking of XY sym-
metry must not induce a gap greater than this value. This is
further compounded by the high degree of accuracy in pre-
dicting the location of the h.; and h.p phase transitions. If
confirmed by future work, the ability of such a small pertur-
bation to dramatically enhance the phase structure of a model
would be extremely fascinating and a compelling avenue for
further theoretical and experimental work.

[1] V.Zapf, M. Jaime, and C.D. Batista, “Bose-Einstein condensa-
tion in quantum magnets,” Rev. Mod. Phys. 86, 563 (2014).

[2] Gavin Hester et al, “Novel Strongly Spin-Orbit Coupled Quan-
tum Dimer Magnet: Yb:Si:07," Phys. Rev. Lert. 123, 027201
(2019).

[3] M. Rigol, T. Bryant, and R. R. P. Singh, “Numerical Linked-
Cluster Approach to Quantum Lattice Models,” Phys. Rev. Lett.
97, 187202 (2006).

[4] W. T. Fuhrman, M. Mourigal, M. E. Zhitomirsky, and A.
L. Chernyshev, “Dynamical structure factor of quasi-two-
dimensional antiferromagnet in high fields,” Phys. Rev. B 85,
184405 (2012).

[5] U. Schollwick, “The density-matrix renormalization group,”
Rev. Mod. Phys 77, 259 (2005).



