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This paper presents analysis work on the stability of two-dimensional granular mixtures in a rotating drum setup within the 

UC Davis summer Research Experiences for Undergraduates (REU) program. A large dataset of avalanche images in a 

model system of steel bearings in dimer and hexagon shapes was available. The goal was to understand the exact geometric 

configuration in the mixture causing instabilities that lead to avalanches by using a neural network to identify specific bearing 

shapes. The work presented here describes a new algorithm to find the centers of the bearing spheres more accurately and to 

improve previous analysis results. 

 

I. INTRODUCTION 

Granular materials, as clusters of macroscopic solid 

objects, appear everywhere in our daily lives, from foods 

(like beans, nuts, grains, and their processed grounds), to 

nature (sand or snow), and even manufactured small parts 

like ball bearings. Granular materials are important to study 

because of their many applications. While consisting of 

single particles, their interactions are fluid-like as granular 

material can take the shape of its container. A particular 

area of interest in research is how different grain sizes 

segregate and how patterns in mixtures are formed. One 

famous example (termed the ‘Brazil Nut Effect’) looks at 

binary granular materials under stimulated vibrational 

movements. An explanation for the commonly observed 

vertical size segregation was found by assigning a certain 

temperature equivalent (of shaking amplitude and 

frequency) in molecular dynamic simulations by Hong et 

al. [1]. A second kind of study, looking at granular material 

under a rotational stimulus, is described in this paper. The 

experimental setup was described in previous reports [2]. 

The basic premise was that a large number of 1/8” 

diameter steel ball bearings were used as grains in a two-

dimensional artificial pile. They were confined into a single 

plane by two sheets of Plexiglas. The drum setup was then 

rotated at a low frequency to generate avalanches which 

were recorded using a video camera. The frames 

immediately before and after each avalanche were extracted 

from the video and stored as image files. The angle of 

stability before an avalanche defines the stability of that 

particular arrangement of grains (note also that angles after 

the avalanche show a correlation). The figure on the right 

shows earlier data taken in the lab of a binary mixture of 

single spheres and hexagons (made by welding together 

single spheres) [3]. It shows that the addition of the larger 

hexagon structures increased the overall pile stability. One 

explanation is that the different sizes lead to a radial 

segregation, with smaller, single spheres moving to the 

center of the drum setup. Their larger concentration is 

responsible for the instability which causes the avalanches. 

However, in the following paper, the focus is on a slightly 

different configuration of hexagon (marked green to aid 

identification) and dimer (vs. single) spheres. The rotating 

drum of this setup is shown in Figure 2. The following 

paper describes updates and changes to the image 

recognition software detailing on detection of sphere 

centers. Results and improvements are shown and 

discussed.  
 

         
FIG. 1. Hexagons are significantly more stable than single 

ball bearings. Angles of stability before (black) and after (blue) 

avalanches are plotted over the percentage of single spheres 

used, adapted from reference [3]. 



 

 

II. IMAGING SOFTWARE

Image analysis was the central method of this experiment 

because it showed the detailed distribution of the different 

sphere shapes at times of the avalanche. The code was 

written in Python, for which many image processing 

libraries are available, including OpenCV [4]. Open

contains algorithms to perform functions such as tracking, 

editing, and analysis of images or videos. When applied 

with machine learning, such as via a neural network, it can 

cluster and classify data. In our case we trained a neural 

network [2] on labeled color sets so that it could classify on 

its own. The reason this approach was taken is shown in the 

figures below. Figure 2 shows the setup while Figure 3 is a 

magnified view of the upper spheres. The resolution of the 

recording camera (at 480x640px) was chosen to accomplish 

a large field of view with fast image transfer and processing 

speed. Hence we need to have software able to identify the 

shapes in a limited resolution image while running the 

experiment continuously over long periods in real time.

 

FIG. 2. Image of the experiment of the rotating drum set 

up used for the data with dimers (silver) and hexagons 

(green).  

 

FIG. 3. Zoom-in image to show the resolution of the 

camera. 
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III. SOFTWARE SETUP

The program code (developed in previous years [2]) 

started by importing a single image (from before each 

avalanche) to be analyzed with OpenCV. It was converted 

to a RGB scale image, after which the 'Laplacian' [5]

taken on a single color (red) of the image to detect the 

edges of objects. In a high level

program was able to detect the border of the drum and mark 

the angle of the granular pile, after which it segregated the 

pile from the rest of the drum and started getting a rough 

estimate of the centers of the spheres by doing two scan

First it looked for the brightest pixels and assumed that 

these corresponded to the center of a sphere. Those pixel 

locations were then stored in a text file. Then it looked for 

the second brightest pixels and appended their locations to 

the same list. Afterwards the program populated a 3x3 

matrix around the bright pixel (note that previously a 5x5 

matrix was described [2.1]). Then a center of mass 

calculation was done to get a more exact center of each 

sphere. The new centers of spheres were sent to the

network to find the hexagons in the pile of spheres. It used 

Delaunay Triangulation to find the first and second nearest 

neighbors from each center of the spheres by 

partition [6]. This is done by partitioning a Euclidean plane 

(our two-dimensional image) into convex polygons with the 

list of centers collected. It does this by using convex 

bisectors to draw a perpendicular line between two points 

(a1, a2) which are our centers. 

Delaunay triangles are the vertices of the Voronoi diagram. 

Then the neural network labeled spheres ‘green’ and 

‘silver’. If it could not decide it labeled it ‘fuzzy’. Lastly, 

the neural network classified hexagons with all the gathered 

data. This is pictured in Figure 4. 

 

FIG. 4. The purple circles are the center of spheres and 

the orange are the vertices of the Voronoi diagram.

 

A significant part of this project involved solving 

problems that arose in attempting to translate existing 

functionality to new software and hardware. The program 

has a long history, having originally been written in IDL 

before being translated to Python [2.2]. A recent upgrade to 

a new workstation using an Intel i7 processor cause
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compatibility problems. Also, the Python packages that had 

been used no longer existed because an upgrade of the 

package to version 3, so the program as a whole did not 

work. This was similar for the OpenCV package, which is 

now OpenCV2. For this the syntax needed to be changed. 

Many lines of code were no longer needed since OpenCV2 

compacted calculations. Afterwards the program still did 

not run completely to expectation, it currently scans only 

one image correctly, but this was sufficient to optimize the 

center finding algorithm. 

 

IV. OPTIMIZING THE ALGORITHM 

In previous work [e.g. 2.1 and 2.2] some hexagons were 

skipped during the identification stage. This happened 

because some of the detected centers were not perfectly 

seated in the middle of each single sphere. The lengths of 

the lines drawn by the Delaunay Triangulation technique to 

connect the centers of the hexagons were too long to 

classify a hexagon correctly (Figure 5). In the step before 

the program uses Delaunay Triangulation, it gets a rough 

estimate of the center locations of each sphere and stores 

them in a list called 'fauxcenters'. The previous algorithm 

populated a 3x3 matrix around the fauxcenters and did a 

center of mass calculation. In our new algorithm, this 

approach is optimized to give a more refined center of each 

sphere. In section V the data from the previous and new 

algorithms are compared.  

 

 

FIG. 5. Example of hexagon identification. The top 

diagram on the left shows a pattern that is correctly 

identified as a hexagon, while the bottom is not. The red 

dots in the image show the centers of each sphere (right). If 

not properly centered the neural network will have trouble 

identifying hexagons. 

The algorithm is based on a center of mass (R) 

calculation, where the weighted average of the positions rn 

is weighted by their corresponding masses mn. 
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The algorithm looks at three pixels vertically and 

horizontally at a time. Then it looks at each pixel's 

brightness level by taking the average of the ‘RGB’ value. 

This gives our amplitude of brightness ‘A’. Looking at 

equation 1, the m in our case is now treated as ‘A’. The 

algorithm was set to give exact results in three cases for A 

from left to right (or up to down, respectively) positions 

indicated by indices from -1 to 1:  

1) A-1=A0, 2) A-1=A1, 3) A0=A1, 

 

FIG. 6. Overview of the pixel representation, each box 

represents a pixel with A0 in the center (left), and the three 

cases where the new centers equal shifted faux centers 

(right). Note that the horizontal representation is also true 

for a vertical arrangement. 

In the first case the center is shifted to the left. In the 

second case, the center is moved in the middle of the 

middle pixel. Finally, the last case shifts the center to the 

right. How far the center gets shifted depends on the value 

of ‘A’. The upcoming section shows the derivation of the 

algorithm for shifts in the horizontal x-direction, but the 

same will apply for y. The centers should be only shifted in 

the range between: 

− �
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For example, Eq. 1 can be written in this form: 
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FIG. 7. Linear scale used (left), the red and blue lines 

represent the positive and negative slopes ‘α’, respectively. 

The weight for each box with ‘α’ values (right). 



 

 

A parameter alpha (α) is introduced as a weight scale for 

this algorithm. Values α1 and α-1 use the linear scale (Figure 

7) and always need to sum up to one. The weight 

stays constant and equal to 1 (omitted in the figure center). 

Thus we get the following form: 
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This is the general quadratic formula and can be solved to 

get the new coordinates. If the quadratic coefficient equals 

zero no shift will be applied, but if it is non

positive quadratic equation is applied.  

 

V. DATA SUMMARY

To evaluate the new algorithm, data looking at the 

processed x and y coordinates (of one image, 

plotted below. Shifts are indicated without the 'integer part', 

only keeping the float value or the numbers past the 

decimal point. For example, a number of 0.1 would indicate 

a small shift in one direction, while a 0.9 value would 

indicate a small shift in the opposite direction. Large shifts 

would show at numbers around 0.5. It should be noted that 

perfectly identified centers will appear in a uniform 

distribution, since the ball centers sh

correlation to pixel locations.  

The goal was to obtain a 'flatter' distribution of coordi

nates than the previous algorithm did. Figures 9 and 10 

show the previous and improved algorithms, respectively. 

The old algorithm (Figure 9) shows a non-even distribution 

of shifts, with too many small shifts. The new algorithm 

(Figure 10) improves this but shows now an inverting trend 

on the distribution compared to the previous one.

 

FIG. 9. Histogram of coordinate shifts obtained by the 

pre-existing algorithm with too many small shifts.
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FIG. 10. Histogram of coordinate shifts obtained by the 

new algorithm. This improved the results but is s

because centers are over-represented in the middle.

in the middle means that the center now 

displaced too much. This suggests that the less 

around the sides are being weighted too heavily. 

looking at squared values of amplitude 'A' yields the 

desired result of a flatter distribution (Figure 11). The 

reason is that 'square' values increase larger numbers more 

than smaller ones, hence it increases the relative weight of 

the center pixel and flattens the histogram. This approach 

also tells us that non-linear scales might work better and 

leaves the discussion open to try other scaling laws.

 

FIG. 11. Histogram of coordinate shifts obtained by the 

new algorithm and with squared values of the pixel 

amplitudes. These settings best satisfy the goal of a flatter 

distribution of shifts.  

However, as mentioned above, the evaluation was only 

performed on a single image. A statistical summary to 

provide an overview on the percentage of correctly 

identified shapes (as performed in the previous work by 

Ortiz [2.1]) is still outstanding. 
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VI. CONCLUSIONS AND FUTURE WORK 

The existing rotating drum setup utilized ball bearings in 

dimer and hexagon shapes to study their influence on 

stability in a granular pile. This work demonstrated an 

improvement in the algorithm to recognize and analyze 

avalanche images. Within this work the whole code was 

updated to Python3 and OpenCV2. It works now on a new 

workstation using an Intel i7 processor. The main focus of 

the work was on improving the center finding algorithm. 

The goal was to get a more accurate center of each sphere 

so that the neural network can find more hexagons during 

the scan. This was achieved by implementing a new way of 

shifting the fauxcenters and applying a square weight to the 

pixel amplitudes. As a result, it provides a flatter 

distribution of coordinates compared to the previously used 

algorithm. Following this work, we can plan toward the 

main goal to present the results of the current setup as 

shown in Figure 1. Next steps are in reapplying the 

program to the rest of the existing data and to provide 

numbers of correctly identified shapes compared to 

previous works. In the ongoing improvement effort, it 

would make sense to rewrite/restructure the whole program, 

utilizing the recent advancements in Python and its new 

libraries like SciPy, Scikit-learn, and the latest version of 

OpenCV. 
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