

Optimization of Center of Sphere Detection in a Granular Pile

Paul M. Hoffmann
1
University of California, Davis, Department of Physics

1 Shields Ave, Davis, CA 95616

e-mail address: p.m.hoffmann@live.com

This paper presents analysis work on the stability of two-dimensional granular mixtures in a rotating drum setup within the

UC Davis summer Research Experiences for Undergraduates (REU) program. A large dataset of avalanche images in a

model system of steel bearings in dimer and hexagon shapes was available. The goal was to understand the exact geometric

configuration in the mixture causing instabilities that lead to avalanches by using a neural network to identify specific bearing

shapes. The work presented here describes a new algorithm to find the centers of the bearing spheres more accurately and to

improve previous analysis results.

I. INTRODUCTION

Granular materials, as clusters of macroscopic solid

objects, appear everywhere in our daily lives, from foods

(like beans, nuts, grains, and their processed grounds), to

nature (sand or snow), and even manufactured small parts

like ball bearings. Granular materials are important to study

because of their many applications. While consisting of

single particles, their interactions are fluid-like as granular

material can take the shape of its container. A particular

area of interest in research is how different grain sizes

segregate and how patterns in mixtures are formed. One

famous example (termed the ‘Brazil Nut Effect’) looks at

binary granular materials under stimulated vibrational

movements. An explanation for the commonly observed

vertical size segregation was found by assigning a certain

temperature equivalent (of shaking amplitude and

frequency) in molecular dynamic simulations by Hong et

al. [1]. A second kind of study, looking at granular material

under a rotational stimulus, is described in this paper. The

experimental setup was described in previous reports [2].

The basic premise was that a large number of 1/8”

diameter steel ball bearings were used as grains in a two-

dimensional artificial pile. They were confined into a single

plane by two sheets of Plexiglas. The drum setup was then

rotated at a low frequency to generate avalanches which

were recorded using a video camera. The frames

immediately before and after each avalanche were extracted

from the video and stored as image files. The angle of

stability before an avalanche defines the stability of that

particular arrangement of grains (note also that angles after

the avalanche show a correlation). The figure on the right

shows earlier data taken in the lab of a binary mixture of

single spheres and hexagons (made by welding together

single spheres) [3]. It shows that the addition of the larger

hexagon structures increased the overall pile stability. One

explanation is that the different sizes lead to a radial

segregation, with smaller, single spheres moving to the

center of the drum setup. Their larger concentration is

responsible for the instability which causes the avalanches.

However, in the following paper, the focus is on a slightly

different configuration of hexagon (marked green to aid

identification) and dimer (vs. single) spheres. The rotating

drum of this setup is shown in Figure 2. The following

paper describes updates and changes to the image

recognition software detailing on detection of sphere

centers. Results and improvements are shown and

discussed.

FIG. 1. Hexagons are significantly more stable than single

ball bearings. Angles of stability before (black) and after (blue)

avalanches are plotted over the percentage of single spheres

used, adapted from reference [3].

II. IMAGING SOFTWARE

Image analysis was the central method of this experiment

because it showed the detailed distribution of the different

sphere shapes at times of the avalanche. The code was

written in Python, for which many image processing

libraries are available, including OpenCV [4]. Open

contains algorithms to perform functions such as tracking,

editing, and analysis of images or videos. When applied

with machine learning, such as via a neural network, it can

cluster and classify data. In our case we trained a neural

network [2] on labeled color sets so that it could classify on

its own. The reason this approach was taken is shown in the

figures below. Figure 2 shows the setup while Figure 3 is a

magnified view of the upper spheres. The resolution of the

recording camera (at 480x640px) was chosen to accomplish

a large field of view with fast image transfer and processing

speed. Hence we need to have software able to identify the

shapes in a limited resolution image while running the

experiment continuously over long periods in real time.

FIG. 2. Image of the experiment of the rotating drum set

up used for the data with dimers (silver) and hexagons

(green).

FIG. 3. Zoom-in image to show the resolution of the

camera.

IMAGING SOFTWARE

the central method of this experiment

because it showed the detailed distribution of the different

sphere shapes at times of the avalanche. The code was

written in Python, for which many image processing

libraries are available, including OpenCV [4]. OpenCV

contains algorithms to perform functions such as tracking,

editing, and analysis of images or videos. When applied

with machine learning, such as via a neural network, it can

cluster and classify data. In our case we trained a neural

led color sets so that it could classify on

its own. The reason this approach was taken is shown in the

figures below. Figure 2 shows the setup while Figure 3 is a

magnified view of the upper spheres. The resolution of the

as chosen to accomplish

a large field of view with fast image transfer and processing

speed. Hence we need to have software able to identify the

shapes in a limited resolution image while running the

experiment continuously over long periods in real time.

FIG. 2. Image of the experiment of the rotating drum set

up used for the data with dimers (silver) and hexagons

in image to show the resolution of the

III. SOFTWARE SETUP

The program code (developed in previous years [2])

started by importing a single image (from before each

avalanche) to be analyzed with OpenCV. It was converted

to a RGB scale image, after which the 'Laplacian' [5]

taken on a single color (red) of the image to detect the

edges of objects. In a high level

program was able to detect the border of the drum and mark

the angle of the granular pile, after which it segregated the

pile from the rest of the drum and started getting a rough

estimate of the centers of the spheres by doing two scan

First it looked for the brightest pixels and assumed that

these corresponded to the center of a sphere. Those pixel

locations were then stored in a text file. Then it looked for

the second brightest pixels and appended their locations to

the same list. Afterwards the program populated a 3x3

matrix around the bright pixel (note that previously a 5x5

matrix was described [2.1]). Then a center of mass

calculation was done to get a more exact center of each

sphere. The new centers of spheres were sent to the

network to find the hexagons in the pile of spheres. It used

Delaunay Triangulation to find the first and second nearest

neighbors from each center of the spheres by

partition [6]. This is done by partitioning a Euclidean plane

(our two-dimensional image) into convex polygons with the

list of centers collected. It does this by using convex

bisectors to draw a perpendicular line between two points

(a1, a2) which are our centers.

Delaunay triangles are the vertices of the Voronoi diagram.

Then the neural network labeled spheres ‘green’ and

‘silver’. If it could not decide it labeled it ‘fuzzy’. Lastly,

the neural network classified hexagons with all the gathered

data. This is pictured in Figure 4.

FIG. 4. The purple circles are the center of spheres and

the orange are the vertices of the Voronoi diagram.

A significant part of this project involved solving

problems that arose in attempting to translate existing

functionality to new software and hardware. The program

has a long history, having originally been written in IDL

before being translated to Python [2.2]. A recent upgrade to

a new workstation using an Intel i7 processor cause

SOFTWARE SETUP

The program code (developed in previous years [2])

arted by importing a single image (from before each

avalanche) to be analyzed with OpenCV. It was converted

to a RGB scale image, after which the 'Laplacian' [5] was

taken on a single color (red) of the image to detect the

edges of objects. In a high level summary [2.1], the

program was able to detect the border of the drum and mark

the angle of the granular pile, after which it segregated the

pile from the rest of the drum and started getting a rough

estimate of the centers of the spheres by doing two scans.

First it looked for the brightest pixels and assumed that

these corresponded to the center of a sphere. Those pixel

locations were then stored in a text file. Then it looked for

the second brightest pixels and appended their locations to

Afterwards the program populated a 3x3

matrix around the bright pixel (note that previously a 5x5

matrix was described [2.1]). Then a center of mass

calculation was done to get a more exact center of each

sphere. The new centers of spheres were sent to the neural

network to find the hexagons in the pile of spheres. It used

Delaunay Triangulation to find the first and second nearest

neighbors from each center of the spheres by Voronoi

partition [6]. This is done by partitioning a Euclidean plane

ensional image) into convex polygons with the

list of centers collected. It does this by using convex

bisectors to draw a perpendicular line between two points

) which are our centers. The circumcenters of

Delaunay triangles are the vertices of the Voronoi diagram.

Then the neural network labeled spheres ‘green’ and

‘silver’. If it could not decide it labeled it ‘fuzzy’. Lastly,

xagons with all the gathered

FIG. 4. The purple circles are the center of spheres and

the orange are the vertices of the Voronoi diagram.

A significant part of this project involved solving

empting to translate existing

functionality to new software and hardware. The program

has a long history, having originally been written in IDL

before being translated to Python [2.2]. A recent upgrade to

a new workstation using an Intel i7 processor caused

compatibility problems. Also, the Python packages that had

been used no longer existed because an upgrade of the

package to version 3, so the program as a whole did not

work. This was similar for the OpenCV package, which is

now OpenCV2. For this the syntax needed to be changed.

Many lines of code were no longer needed since OpenCV2

compacted calculations. Afterwards the program still did

not run completely to expectation, it currently scans only

one image correctly, but this was sufficient to optimize the

center finding algorithm.

IV. OPTIMIZING THE ALGORITHM

In previous work [e.g. 2.1 and 2.2] some hexagons were

skipped during the identification stage. This happened

because some of the detected centers were not perfectly

seated in the middle of each single sphere. The lengths of

the lines drawn by the Delaunay Triangulation technique to

connect the centers of the hexagons were too long to

classify a hexagon correctly (Figure 5). In the step before

the program uses Delaunay Triangulation, it gets a rough

estimate of the center locations of each sphere and stores

them in a list called 'fauxcenters'. The previous algorithm

populated a 3x3 matrix around the fauxcenters and did a

center of mass calculation. In our new algorithm, this

approach is optimized to give a more refined center of each

sphere. In section V the data from the previous and new

algorithms are compared.

FIG. 5. Example of hexagon identification. The top

diagram on the left shows a pattern that is correctly

identified as a hexagon, while the bottom is not. The red

dots in the image show the centers of each sphere (right). If

not properly centered the neural network will have trouble

identifying hexagons.

The algorithm is based on a center of mass (R)

calculation, where the weighted average of the positions rn

is weighted by their corresponding masses mn.

� = ������	�	��
�

����	��

 (1)

The algorithm looks at three pixels vertically and

horizontally at a time. Then it looks at each pixel's

brightness level by taking the average of the ‘RGB’ value.

This gives our amplitude of brightness ‘A’. Looking at

equation 1, the m in our case is now treated as ‘A’. The

algorithm was set to give exact results in three cases for A

from left to right (or up to down, respectively) positions

indicated by indices from -1 to 1:

1) A-1=A0, 2) A-1=A1, 3) A0=A1,

FIG. 6. Overview of the pixel representation, each box

represents a pixel with A0 in the center (left), and the three

cases where the new centers equal shifted faux centers

(right). Note that the horizontal representation is also true

for a vertical arrangement.

In the first case the center is shifted to the left. In the

second case, the center is moved in the middle of the

middle pixel. Finally, the last case shifts the center to the

right. How far the center gets shifted depends on the value

of ‘A’. The upcoming section shows the derivation of the

algorithm for shifts in the horizontal x-direction, but the

same will apply for y. The centers should be only shifted in

the range between:

− �
	 ≤ � ≤ �

	 (2)

For example, Eq. 1 can be written in this form:

� = ����(�)������(�)��
���(�)�����������(�)��

 (3)
�� = � (4)

��(�) = � + �
	 (5)

���(�) = �
	 − � (6)

���(�) + ��(�) = � (7)

FIG. 7. Linear scale used (left), the red and blue lines

represent the positive and negative slopes ‘α’, respectively.

The weight for each box with ‘α’ values (right).

A parameter alpha (α) is introduced as a weight scale for

this algorithm. Values α1 and α-1 use the linear scale (Figure

7) and always need to sum up to one. The weight

stays constant and equal to 1 (omitted in the figure center).

Thus we get the following form:

� =   ����
	 (������)����

��
	�� �����������

	 ��

(�� − ���)�	 − ����
	 − �� + ��

	 � +
This is the general quadratic formula and can be solved to

get the new coordinates. If the quadratic coefficient equals

zero no shift will be applied, but if it is non

positive quadratic equation is applied.

V. DATA SUMMARY

To evaluate the new algorithm, data looking at the

processed x and y coordinates (of one image,

plotted below. Shifts are indicated without the 'integer part',

only keeping the float value or the numbers past the

decimal point. For example, a number of 0.1 would indicate

a small shift in one direction, while a 0.9 value would

indicate a small shift in the opposite direction. Large shifts

would show at numbers around 0.5. It should be noted that

perfectly identified centers will appear in a uniform

distribution, since the ball centers sh

correlation to pixel locations.

The goal was to obtain a 'flatter' distribution of coordi

nates than the previous algorithm did. Figures 9 and 10

show the previous and improved algorithms, respectively.

The old algorithm (Figure 9) shows a non-even distribution

of shifts, with too many small shifts. The new algorithm

(Figure 10) improves this but shows now an inverting trend

on the distribution compared to the previous one.

FIG. 9. Histogram of coordinate shifts obtained by the

pre-existing algorithm with too many small shifts.

) is introduced as a weight scale for

use the linear scale (Figure

7) and always need to sum up to one. The weight α0 for A0

stays constant and equal to 1 (omitted in the figure center).

 �
 (7)

+ ����
	 − ��

	 (8)

This is the general quadratic formula and can be solved to

get the new coordinates. If the quadratic coefficient equals

zero no shift will be applied, but if it is non-zero then the

DATA SUMMARY

algorithm, data looking at the

(of one image, Figure 2) are

plotted below. Shifts are indicated without the 'integer part',

only keeping the float value or the numbers past the

a number of 0.1 would indicate

in one direction, while a 0.9 value would

indicate a small shift in the opposite direction. Large shifts

would show at numbers around 0.5. It should be noted that

perfectly identified centers will appear in a uniform

distribution, since the ball centers should have no

The goal was to obtain a 'flatter' distribution of coordi-

Figures 9 and 10

show the previous and improved algorithms, respectively.

even distribution

of shifts, with too many small shifts. The new algorithm

(Figure 10) improves this but shows now an inverting trend

on the distribution compared to the previous one. The peak

FIG. 9. Histogram of coordinate shifts obtained by the

existing algorithm with too many small shifts.

FIG. 10. Histogram of coordinate shifts obtained by the

new algorithm. This improved the results but is s

because centers are over-represented in the middle.

in the middle means that the center now

displaced too much. This suggests that the less

around the sides are being weighted too heavily.

looking at squared values of amplitude 'A' yields the

desired result of a flatter distribution (Figure 11). The

reason is that 'square' values increase larger numbers more

than smaller ones, hence it increases the relative weight of

the center pixel and flattens the histogram. This approach

also tells us that non-linear scales might work better and

leaves the discussion open to try other scaling laws.

FIG. 11. Histogram of coordinate shifts obtained by the

new algorithm and with squared values of the pixel

amplitudes. These settings best satisfy the goal of a flatter

distribution of shifts.

However, as mentioned above, the evaluation was only

performed on a single image. A statistical summary to

provide an overview on the percentage of correctly

identified shapes (as performed in the previous work by

Ortiz [2.1]) is still outstanding.

FIG. 10. Histogram of coordinate shifts obtained by the

new algorithm. This improved the results but is still uneven

represented in the middle.

n the middle means that the center now tends to be

sts that the less bright pixels

around the sides are being weighted too heavily. However,

amplitude 'A' yields the

desired result of a flatter distribution (Figure 11). The

is that 'square' values increase larger numbers more

than smaller ones, hence it increases the relative weight of

the center pixel and flattens the histogram. This approach

linear scales might work better and

en to try other scaling laws.

FIG. 11. Histogram of coordinate shifts obtained by the

new algorithm and with squared values of the pixel

amplitudes. These settings best satisfy the goal of a flatter

owever, as mentioned above, the evaluation was only

performed on a single image. A statistical summary to

provide an overview on the percentage of correctly

identified shapes (as performed in the previous work by

VI. CONCLUSIONS AND FUTURE WORK

The existing rotating drum setup utilized ball bearings in

dimer and hexagon shapes to study their influence on

stability in a granular pile. This work demonstrated an

improvement in the algorithm to recognize and analyze

avalanche images. Within this work the whole code was

updated to Python3 and OpenCV2. It works now on a new

workstation using an Intel i7 processor. The main focus of

the work was on improving the center finding algorithm.

The goal was to get a more accurate center of each sphere

so that the neural network can find more hexagons during

the scan. This was achieved by implementing a new way of

shifting the fauxcenters and applying a square weight to the

pixel amplitudes. As a result, it provides a flatter

distribution of coordinates compared to the previously used

algorithm. Following this work, we can plan toward the

main goal to present the results of the current setup as

shown in Figure 1. Next steps are in reapplying the

program to the rest of the existing data and to provide

numbers of correctly identified shapes compared to

previous works. In the ongoing improvement effort, it

would make sense to rewrite/restructure the whole program,

utilizing the recent advancements in Python and its new

libraries like SciPy, Scikit-learn, and the latest version of

OpenCV.

ACKNOWLEDGEMENTS

I want to thank the NSF for providing the opportunity at

the UC Davis REU program. I am especially thankful to Dr.

Zieve and her lab for the support.

[1] D.C. Hong, P.V. Quinn, and S. Luding, Phys. Rev. Lett.

86, 3423 (2001)

[2] UC Davis REU program, http://london.ucdavis.edu/~reu

retrieved 8/20/2019

[2.1] S. Ortiz, ~/REU18/Papers/ortiz.pdf

[2.2] N. Flowers, ~/REU15/Papers/flowers.pdf

[3] A. G. Swartz, J. B. Kalmbach, J. Olson, and R. J. Zieve,

Granul. Matter 11, 185–191 (2009)

[4] OpenCV, https://opencv.org/

[5] Laplacian Operator, https://docs.opencv.org/2.4/doc/

tutorials/imgproc/imgtrans/laplace_operator/laplace_operat

or.html

[6] Delaunay Triangulation, http://mathworld.wolfram.com/

DelaunayTriangulation. html

