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Abstract 

Direct astrophysical observations find a rate of expansion of the universe of 𝐻0 = 73.52 ± 1.62 

km/s/Mpc while indirect methods using the Cosmic Microwave Background and the standard 

cosmological model to map to today find 𝐻0 = 67.27 ± 0.60 km/s/Mpc. These values differ by 

4.4σ and are a major area of debate in modern cosmology. We aim to explore a cosmological 

solution to this famous “Hubble Tension” by including a generalized energy component or scalar 

field into the Boltzmann code and doubling the model parameter space to include the rate of 

expansion over six epoch bins of redshift. This will allow the data to guide the model instead of 

forcing a specific model to the data. This preliminary work addresses the use of MCMC for 

cosmological posterior determination and the use of a specific parameter estimation architecture 

for cosmological fits. We find that our architecture reproduces Planck results for five out of six 

of the parameters, and include potential further study. 



Background 

Expansion of the Universe 

The universe is expanding, and has been throughout cosmological history. The nature of this 

expansion constrains theories about the exact composition of energy in the universe. Today, for 

example, the universe is expanding at an accelerated rate due to the dominance of dark energy. 

This expansion is not the motion of objects through space, but rather an expansion of the space 

itself. In a given time interval when the universe has doubled in size, the space between nearby 

galaxies has doubled and the space between distant galaxies has doubled. This means that, from 

the perspective of the Earth, distant galaxies will appear to move away faster than closer 

galaxies. 

It was Hubble who discovered this disparity in galactic motion in 1929 by comparing the 

recessional velocity derived from cosmological redshift measurements in spectra to the distance 

to the galaxy from which the spectra were taken. Hubble found that for nearby galaxies, 

𝑣 = 𝐻0𝑑, 

where 𝐻0 is a constant called the Hubble constant, 𝑣 is recessional velocity, and 𝑑 is distance. 

𝐻0, then, gives the recessional velocity of nearby objects per length away and is thus a measure 

of the rate of expansion today. Hubble’s original measurements gave 𝐻0 = 100 km/s/Mpc, 

meaning that galaxies separated by 1Mpc would have relative velocity 100km/s today. 

 

The Hubble Tension 

Hubble’s method of finding the rate of expansion was a direct observational one, akin to 

measuring the velocity of cars on the road with radar. One could also imagine an indirect method 

akin to predicting the velocity of a car on one road based on its velocity on a previous road in its 

path and a model for its motion over time. These methods are completely independent, and if the 

velocity measurements on both roads and the model are correct, then these methods should 

agree. Indeed there are observations from the universe in the past: the Cosmic Microwave 

Background, and there is a model for changes in the universe over time. However, the values of 

the Hubble constant found by these two methods disagree by 4.4σ. 

The direct observational method has been honed over the last 90 years, including, in addition to 

better telescopes and digital processing, the ability to measure distances of further galaxies. 

Cosmological distances are found using the distance ladder: a series of methods of measuring 

distances to further and further objects where each method is calibrated by data from the 

previous method. The distances to nearby objects (d < 25 million light years), namely Cepheid 

variable stars, are found using parallax. At different times throughout the year an object appears 

to be shifted based on the differential position of the Earth in its orbit and according to the 

distance to the object, similar to looking at an object with one eye closed and then switching 

eyes. This method is limited since the shift is smaller and more difficult to resolve for farther 

objects.  



One type of prevalent nearby object, namely Cepheid variable stars, have an empirical relation 

between their period and luminosity. Parallax measurements for a population of nearby Cepheids 

allow this relation to be calibrated to distance and the stars to be used as so-called “Standard 

Candles” where the relation is extended to find the distances to farther galaxies containing 

Cepheid variable stars. The third and final rung of the distance ladder takes a similar step using 

type 1a supernovae. Distances to nearby (d < 100 million light years) supernovae are calibrated 

using the previous rung of the distance ladder for galaxies containing both Cepheid variable stars 

and type 1a supernovae. These supernovae are then assumed to be Standard Candles due to the 

universal thermonuclear process causing them, and the calibrated relation is extended to 

determine distances to more distant galaxies (d < 1 billion light years). 

The current value from standard candles using HST (the Hubble Space Telescope), Gaia, and 

SH0ES (Supernovae, H0, Equation of State of Dark Energy) distance and redshift measurements 

is 𝐻0 = 73.52 ± 1.62 km/s/Mpc (Reiss et al, 2018). One group of proposed solutions to the 

Hubble tension claims that systematics in the distance ladder are artificially inflating the value. 

For example, the luminosity of supernova depends on the age of the stars in the local 

environment and galaxies at higher redshifts have higher star formation rates with more new, 

young stars. This could introduce a systematic bias in the distance ladder that would need to be 

understood and accounted.  

Indirect determination of the Hubble constant relies on data from the Cosmic Microwave 

Background (CMB) along with a cosmological model. The CMB is the light emitted 

immediately after recombination, when electrons combined with protons into atoms for the first 

time. This is the time at which the universe became transparent and thus the CMB gives a 

snapshot of matter perturbations in the universe at that time (380,000 years after the big bang). 

CMB data include temperature (T) as well as E- and B- mode polarization. Power spectra can be 

constructed from correlations of modes as a measure of the amplitude of fluctuations on different 

angular scales. For example, the TT spectrum contains information about temperature 

fluctuations, while the TE spectrum gives the cross-correlation between temperature and E-mode 

polarization. Fitting these data with a model that depends on 𝐻0 provides an indirect value of the 

Hubble constant. 

The standard cosmological model, called ΛCDM, includes the cosmological constant, or dark 

energy, and cold dark matter. This model includes six parameters: the energy density of dark 

matter, Ω𝐶𝐷𝑀; the energy density of baryons, Ω𝑏; the angular sound horizon, 𝜃𝑠; the optical 

depth, 𝜏; an amplitude factor, A; and the spectral density, 𝑛𝑠. The 𝜃𝑠 parameter is degenerate 

with 𝐻0 and is what is known as a “Standard Ruler”. The angular sound horizon is related 

trigonometrically to the distance to the CMB (𝑑𝐴) and the physical radius of the sound horizon at 

the time of the CMB (𝑅𝑝ℎ𝑦𝑠) by, 

 



where 𝐻1 is the expansion rate before the time of the CMB and depends only on the densities of 

radiation and matter, which can be found from the CMB temperature and parameter estimates, 

respectively; while 𝐻2 is the expansion rate after the CMB , which scales back from today using 

the relative energy density of different components of the universe, and thus depends on 𝐻0. In 

this way, the Hubble constant can be either derived from parameterization of the sound horizon 

or explicitly included as a parameter in the CMB power spectrum fit. (Dodelson, 2003). 

The current value using this method and assuming the standard cosmological model is 𝐻0 =

67.27 ± 0.60 km/s/Mpc (Planck Collaboration VI, 2018). The second camp of solutions to the 

Hubble tension involve changes to the standard cosmological model and variations on power 

spectra fitting techniques. 

Previous studies of cosmological solutions found that late-time solutions are inconsistent with 

constraints from other observations, such as baryon acoustic oscillations (BAO; Aylor et al, 

2018), so that any changes to the cosmological model that would affect 𝐻0 need to be in the two 

decades of expansion before recombination. The aim of the Designer H(z) project is to add a 

generalized new species or scalar field into the model to get more freedom for the expansion rate 

around the time of recombination, and to use a larger parameter space that includes multiple 

redshift epoch bins for 𝐻0. 

 

Methods 

Cosmological models contain six or more parameters. This large parameter space makes 

sampling on a grid to find a fit computationally impractical. Additionally, it is useful to have full 

probability distributions for parameters rather than just single fit values with uncertainties. These 

considerations motivate the use of Markov Chain Monte Carlo. 

 

Markov Chain Monte Carlo 

Markov chain Monte Carlo methods provide a means of sampling probability functions 

computationally using a chain of samples analyzed against a prior and likelihood. According to 

Bayes’ Theorem in statistics,  

𝑃(𝜃|𝐷) ∝ 𝑃(𝜃)𝑃(𝐷|𝜃), 

where P(x) is the probability of x, 𝜃 is an ordered set of parameters, and D is observed data. 

𝑃(𝜃|𝐷) can be interpreted as the posterior, that is, the probability distributions of the parameters 

given the observed data; 𝑃(𝜃) as the prior, the probability distribution of the parameters 

independently; and 𝑃(𝐷|𝜃) as the likelihood, the probability that the observed data occurred 

given a set of parameters. This is shown graphically for a one-dimensional parameter space in 

figure 1. This means that, having observed some data, and knowing the dependence of the data 

on the parameters, we can find the distribution of parameters conditional on the observed data. In 

a multi-dimensional parameter space where the independent values of parameters are of interest, 



marginal probabilities can be found by integrating the probability of the full parameter vector 

given the data over the reduced space of all parameters except the one of interest, 

𝑃(𝜃𝑖|𝐷) = ∫ 𝑃(𝜃1, 𝜃2, … , 𝜃𝑛|𝐷)𝑑𝜃1𝑑𝜃2 … 𝑑𝜃𝑖−1𝑑𝜃𝑖+1 … 𝑑𝜃𝑛 (Gilks et al, 1996). 

 

Figure 1. Graphical representation of Bayes’ theorem with Gaussian probabilities 

We used the Metropolis Hastings algorithm to implement our chain. This algorithm samples a 

value of the parameter vector based on the current value in the chain and the prior distribution. 

The algorithm will either accept or reject the new sampled value based on its likelihood. If it is 

accepted then the sample value will be kept as the value at this step in the chain. If it is rejected 

then the chain will repeat the value it had before sampling (Hastings, 1970; figure 2a). After 

some burn-in steps, the chain begins to sample the posterior (figure 2b).  

 

Figure 2. (a) example Metropolis Hastings chain for a single parameter and (b) zoomed-in view 

to show jumps to a new value at acceptances and constant value at rejections 



Cosmological posterior determination 

Before we can expand the parameter space to include bins of epochs of expansion, we needed to 

check that we can use our posterior determination code architecture to reproduce the Planck 

posteriors. Our full architecture began with priors, which include constraints from other 

cosmological observations such as BAO and which we used from Planck Collaboration VI 

(2018). We run a Metropolis Hastings algorithm on these priors and allow it to accept and reject 

samples based on the likelihood. We found the likelihood using a comparison between the CMB 

data and output from a Boltzmann solver. The Boltzmann solver, CLASS (Cosmic Linear 

Anisotropy Solving System; Blas et al, 2011), numerically evolves density and velocity 

perturbation equations for each species of energy in the universe based on the sampled model 

parameters and outputs a modeled CMB power spectrum. As an example, figure 3 shows CLASS 

model power spectra for three different values of 𝐻0. 

 

Figure 3. Example CLASS power spectra for different values of the Hubble constant. (ℓ gives 

the angular mode, where smaller modes correspond to larger perturbation wavelength scales; 

Blas et al, 2011) 

Results 

We are able to use our cosmological parameter posterior determination architecture for the six-

parameter standard cosmological model. We are able to reproduce the Planck posteriors for all 

parameters except 𝜃𝑠 (figure 4 and Appendix). Though the uncertainty on 𝜃𝑠 is very small, O(-4), 

the posteriors differ by about 1σ. 

One explanation for such an offset in MCMC posteriors is a lack of convergence. We ran the 

chains for 20,000 steps and the acceptance ratio was R=0.23 which is well within the ideal 0.2-

0.3 range. We also used the covariance matrix generated from a full 20,000 step chain as the 

prior for a new 20,000 step chain and found indistinguishable curves, with only variations on the 

third significant digit of some standard deviations. We conclude that the chain is converging, 

albeit, to a different value from the Planck posterior. 



 

 

Figure 4. Individual marginal posterior distributions for 6-parameter standard cosmological 

model (black) compared to Planck Collaboration VI (2018) posteriors (blue) 

Discussion 

Preliminary use of our posterior determination architecture demonstrates that we can reproduce 

the Planck results, but have one parameter (𝜃𝑠) left to optimize. It is essential to optimize this 

parameter before moving on to higher-dimensional analysis due to its degeneracy with 𝐻0. 

Once the 𝜃𝑠 posterior is improved, we can use these methods to find posteriors on a 12-

dimensional space with 6 new parameters being parameterization of 𝐻0 in bins of redshift. By 

also adding in a new, flexible species that can dominate around the time of recombination, we 

can allow the data to design the model rather than forcing a particular model to the data. Based 

on previous work in this era before recombination we expect this kind of re-parameterization will 

widen the 𝐻0 posterior and thus weaken the Hubble tension. 
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Appendix 

 

Figure A: Full marginal posterior distributions for 6-parameter standard cosmological model 

(black) compared to Planck Collaboration VI (2018) posteriors (blue) 


