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This paper presents a calculation of the effective in situ antenna factor of an arbitrary antenna
using simulation software CST. This work is focused on the ‘Dark Radio’ dark matter search and
thus focuses on simulating the feed voltage of an antenna in a Faraday cage excited by dark photons.
Electrical and physical modeling of the surroundings and antenna were performed showing agreement
to expectations, but more benchmarking should be done. Additionally, an excitation method was
developed to emulate dark photon fields. This results in an antenna factor that can be used to
determine the coupling, ε, from feed voltage.

I. INTRODUCTION

The nature of dark matter is one of the biggest open
problems in physics. At a high level, our theory of grav-
itation has been well tested and verified in high acceler-
ation regions (e.g., the Earth, our solar system) but ob-
servations in low acceleration regions (e.g., galaxies and
galaxy clusters) deviate from predictions. This discrep-
ancy is old, with modern investigation beginning with
Lord Kelvin’s lecture in 1904 [11], yet it is still unan-
swered.

There are three possible resolutions to this discrep-
ancy: our observations are faulty, our understanding of
dynamics is flawed, or our observations are correct but
there is unobserved mass (‘dark matter’). Improved ob-
servations have made the first option unlikely and thus
the discrepancy exists and is either in faulty dynamics or
dark matter. These options are discussed in detail in ap-
pendix A 3 but, to summarize, modifications to dynamics
have been unable to explain galaxy cluster observations
and thus dark matter is the most promising avenue.

While many dark matter theories are losing parameter
space with each generation of experiments, this paper
focuses on a relatively unexplored dark matter theory:
‘dark photons’. See figure 1 for an overview of the avail-
able dark matter parameter space and what is constrain-
ing it. This plot shows a large area of interest for dark
photons (‘hidden photino’), a large motivation for their
current search.

Technically, dark photons are hypothesized low mass
vector bosons that interact with the standard model via
kinetic mixing. They are described by new massive vec-
tor fields that can be thought of as a copy of electromag-
netism with minor differences to be discussed in section
II. This theory is discussed in more detail in appendix B
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but the details of that discussion are not needed for this
work.

II. THEORY

Light is a traveling excitation of electromagnetic fields
whose motion is described by the wave equation:

�Aµ = −µ0J
µ (1)

(see appendix A for variable definitions and conventions).
This equation is effectively equivalent to Maxwell’s equa-
tions in their standard differential form:

∇ ·E =
ρe
ε0

Gauss’s Law,

∇ ·B = µ0ρm Gauss’s Law for magnetism,

−∇×E =
∂B

∂t
+ µ0jm Maxwell-Faraday eq., and

∇×B = µ0ε0
∂E

∂t
+ ε0je Ampère’s circuital law,

(2)

except that it lends itself to more advanced analysis.
An alternative and modern description of light is as

a massless particle traveling at c ≡ 299792458 m/s in
a vacuum. We call this particle a ‘photon’ and give it
energy proportional to the frequency of traveling wave
that it corresponds to. These theories are unified in QFT
in which this particle is a quantized excitation of the
electromagnetic fields.

In a theoretical leap, new ‘dark’ fields are hypothe-
sized that are analogs of the electromagnetic fields except
they are massive[14] (mass m) and their interaction with
charges is suppressed (coupling ε). Then, just as pho-
tons are quantized excitations of electromagnetic fields,
dark photons are quantized excitations of the dark fields.
These modifications are clear in the wave equation de-
scribing dark fields[8]:

(�−m2)A′µ = −εµ0J
µ. (3)
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FIG. 1. (taken from [10]) Dark matter parameter space of kinetic mixing χ (ε in this writeup) to mass mγ′ (m in this writeup).
Transparent tan regions indicate areas of interest for various dark matter theories; opaque colored regions exclude dark matter.

The three dark photon parameters, then, are the field
strength E′ (linked to B′), mass m, and coupling ε.

A. Field Strength

Relativistically, mass and energy are equivalent (E2 =
(pc)2 + (mc2)2) and thus the observational discrepancies
motivating dark matter are energy discrepancies. The
need for dark matter, then, is a need for a bound energy
density in galaxies and galaxy clusters that has so far
been unseen[15].

To see if dark photons could provide such energy den-
sity, we determine the energy density of a dark photon
field known amplitude. Given a field described by La-
grangian density L, the Hamiltonian H gives the energy
density[16]. For electromagnetism, for example, the en-
ergy density is:

H =
1

2µ0

(
E2

c2
+B2

)
(4)

where the Legendre transform to get the Hamiltonian
is more complicated than just H = ∂L

∂Ȧν
Ȧν − L since

the Hamiltonian must be gauge-independent. Performing
the same Legendre transform for the dark fields results
in H ≈ ε0E

′2/2 since the B′ component is velocity sup-
pressed (B′ ∝ vE′ where v is the speed of dark matter[3])
and v small.

With the energy density of dark fields, the dark field

strength can be calculated:

E′ ≈
√

2ρDM/ε0 ≈ 3300V/m (5)

using the observed local dark matter density ρDM =
0.3 ± 0.1 GeV cm−3[2] and assuming all dark matter is
dark photons. In reality, even if dark photons are the pri-
mary dark matter component, not all of dark matter will
be dark photons. The corrections by other dark matter
components, however, are a finer detail than of current
concern.

B. Mass and Momentum Distribution

Photons and dark photons are discrete excitations of
the electromagnetic and dark fields respectively. These
excitations act as quantum harmonic oscillators at every
point in space and thus, the energy levels for a given
frequency are separated by hν for these oscillators, thus
giving the energy of the particle E = hν.

On the other hand, Einstein’s energy momentum re-
lationship gives the energy of a particle in terms of mo-
mentum and mass:

E =
√

(pc)2 + (mc2)2. (6)

These two views combine to give the relationship: hν =√
(pc)2 + (mc2)2. For photons this simplifies to p = hν/c

since photons are massless. For dark photons, conversely,
this relationship is ν ≈ mc2/h since p � mc by looking
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at momentum distributions of dark matter. Thus the
frequency of any dark photon signal gives the mass m.

Despite p � mc, the dark matter momentum spread
is nonzero and this does affect the observed signal. Were
dark photons all without momentum, then the observed
signal would be at a single frequency νsignal = mc2/h
with no spread. The nonzero momentum distribution,
however, acts to spread the frequency of the signal[4]:

mc2

h
≤ νsignal .

mc2

h
(1 + 10−6) (7)

giving

∆νsignal(ν) ∼ 10−6ν (8)

and thus a quality factor of the signal of

Q =
νsignal(ν)

∆νsignal(ν)
≈ 106. (9)

This provides a serious constraint on possible dark pho-
ton signals: they must have a very large quality factor.
Given the high probability of systematic noise entering
into detectors, constraints such as this are valuable in
providing confidence that a measured signal is actually
from dark photons.

C. Coupling

As described in section B 3, the dark photon field in-
teracts with charges like the electromagnetic field, except
suppressed by ε. In other words, a field E′ is equivalent to
an electric field by E = εE′. This allows search for dark
photons through electromagnetic field detectors such as
antennae, which is used in this paper.

The search for dark photons is drastically different
than that for high mass particles: low mass searches for
weak signals through use of resonating structures; high
mass searches for rare events through use of large de-
tection volume. An example of the high mass search is
LZ: a cutting edge liquid xenon time projection cham-
ber searching for WIMPs through waiting for WIMPs to
interact with xenon nuclei and produce light[1]. Both
detectors need to run for long times, but for different
reasons. Dark photon searches need the dark photon sig-
nal to ‘ring up’ while other (noisy) signals average out;
WIMP searches wait until the rare event (WIMP hitting
a nucleus) occurs.

The relationship between dark field strength and out-
putted signal must be determined. For antennae in free
space, this relationship is called antenna factor and is sen-
sitive to antenna geometry and readout electronics[17].
The antenna factor has units of inverse length and mea-
sures the electric field generated by an antenna fed an
excitation voltage of 1 V.

Conducting surroundings modify the feed voltage for
a given field strength and thus, in the actual calculation

FIG. 2. CAD model of dark radio experiment. Green high-
lighted object in the center of the room is the bicon antenna
with transmission line feed.

the detailed geometry of the room must be considered.
The complexity of the geometry, especially in the actual
experimental setup, requires numerical simulation to find
such an (effective[18] since we take surroundings into ac-
count) antenna factor.

Defining the (effective) antenna factor as the ratio of
field strength (without the antenna there) to feed voltage
(with the antenna there):

AF (ν) =

∣∣∣∣E(ν)

V (ν)

∣∣∣∣ , (10)

we see that knowledge of the (effective) antenna factor
and feed voltage would give the coupling by:

ε =
E(ν)

E′(ν)
=
AF (ν) · V (ν)

E′(ν)
≈ AF (ν) · V (ν)

3300V/m
. (11)

Thus the antenna factor gives the coupling, the last un-
known.

III. EXPERIMENTAL SETUP

A COM-POWER AB-900A biconical antenna (or ‘bi-
con’) rated for 30-300 MHz is used to measure the dark
photon signal since the dark photon field is equivalent to
an electric field of strength E = εE′. The antenna picks
up other signals (e.g., wi-fi, cellular), too, and these must
be canceled for accurate measurement of dark photons.

Faraday cages block electric fields through surface cur-
rents and thus are a natural solution to the ambient elec-
tromagnetic field problem. Since dark fields only interact
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FIG. 3. Dark radio experimental schematic. Assuming dark fields propagating in the z direction, a bicon antenna (rated for
30-300MHz) is placed in the Faraday cage aligned for maximum detection efficiency. Electronics such as a balun, amplifier,
and ADC are in the room before a fiber optic feed to the spectrum analyzer outside the room.

with charges very weakly (if ε was large, it would have
already been noticed), they penetrate much deeper than
electromagnetic fields. Thus, by placing the bicon inside
a ETS-LINDGREN 8 × 10 × 12ft Faraday cage (see fig-
ure 2), the only measurable signals should be from dark
photons. More detailed discussion is provided in [8].

To measure the antenna feed signals, a Rigol RSA5065
spectrum analyzer is attached to the feed through fiber
optic connections to measure the voltage across a fre-
quency range (30-300 MHz for first tests; see figure 3).
The feed voltage is monitored for extended periods of
time (up to 1 year) so that noise is averaged to low lev-
els, hopefully revealing a (weak) dark photon signal of
Q ≈ 106 with frequency giving m and signal strength
giving ε. Upgrades to the electronics have been devel-
oped and are currently being tested/manufactured.

IV. SIMULATIONS

Due to the complexity of the antenna and Faraday
cage, a computer simulation is needed to the effective
antenna factor. In this writeup, we use CST (Computer
Simulation Technology) software, which is an electromag-
netic software modeling Maxwell’s equations. While dark
photons modify Maxwell’s equations, the antenna mea-

sures the electromagnetic fields that the dark fields create
and thus this software is sufficient.

There are three main tasks involved in this simulation:

1. determine excitation method to simulate dark
fields,

2. model and benchmark the experiment, and

3. simulate the (effective) antenna factor.

These simulations are a non-standard use-case of CST,
making verification even more important than normal.

A. Wall Currents

As shown in [8], the dark fields are found to be equiv-
alent to AC surface currents E ∝ Jν in the walls of the
Faraday cage (E the real electric field generated by dark
photons and J the surface currents on the walls of the
waveguide) polarized in the same direction of the dark
photon field. For these simulations the frequencies of
interest are ν ∈ [30, 300] MHz and the dark fields are
assumed to be polarized along the antenna axis. These
currents are induced using the tool ‘Field Source’ and
they excite a field inside the cage that is propagated by
CST’s numerical solver.
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FIG. 4. Field strengths at one instant in 8× 12ft waveguide,
excited by ‘Field Source’ wall currents. Red is most positive
field, blue is the most negative field, green is neutral, and
coloring is linear. Top: TE31 mode shown at ∼ 137.46MHz
(shown at 135MHz). Bot: TE13 mode shown at∼ 188.92MHz
(shown at 190MHz).

To verify this excitation method, the room modes are
found and compared to predictions. In a conducting box
of interior dimensions a× b×d, Maxwell’s equations pre-
dict resonances at frequencies[9]:

ωmnp = cπ

√(m
a

)2
+
(n
b

)2
+
(p
d

)2
. (12)

The modes in a waveguide are just those in a conducting
box with d→∞. For example, a 8× 12ft waveguide has
modes ω31 = 137.46MHz and ω31 = 188.92MHz. Excit-
ing current at these frequencies shows the desired modes
(see figure 4), providing evidence that the excitation is
working as expected. Other modes were verified.

These currents are used to determine the (effective) an-
tenna factor of an antenna in our room. Since AF (ν) =
|E(ν)/V (ν)| and the voltage is measured, the equivalent
field strength also must be found to determine the an-

FIG. 5. Absolute value of electric field at the origin of the
room (figure 2) when excited by wall currents of constant
strength across the frequency range (blue) and when the cur-
rents are scaled by frequency (equation 13). Room modes are
visible as the peaks in field strength.

tenna factor. This field strength is that which would
cause these currents in vacuum - it is not the field in the
resonating Faraday cage. On resonance, the field in the
room is increased; off resonance and at large wavelengths
(those larger than the waveguide), the field in the room
is suppressed due to the requirement of E‖ = 0.

To circumvent this problem, the field at the origin of
the room is simulated across the frequency range of in-
terest and is manually chosen at a high frequency away
from resonances (ν0 ≈ 285MHz), with field E ≈ 1.2V/m.
The current at all frequencies is then scaled to:

J(ν) = k
J0(ν0)

E(ν0)ν
≈ k 1

1.2ν
, (13)

where k fixes units, J0(ν0) is the original current den-
sity (arbitrarily chosen) exciting fields at ν0, E(ν0) is
the field at the origin at that frequency, and J(ν) is
the corrected driving current at ν. This scaling should
(relatively) increase the electric field strength at low fre-
quencies, which is verified in the simulations of the room
modes in the detailed room model (see figures 5 and 2).
These currents, then, are equivalent to a 1 V/m field at
the origin, allowing the antenna factor to be calculated:
AF (ν) = 1V/m/|V (ν)|.

B. Experiment Modeling

The experiment is modeled in Autodesk Inventor and
simulated in CST. There are three sections of the mod-
eling. The room needs to be modeled (see figure 2), the
antenna needs to be modeled (see figure 7), and the elec-
trical components of the antenna need to be modeled (see
figure 3).
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FIG. 6. Field strengths at one instant in 8×10×12ft Faraday
cage, excited by 135MHz ‘Field Source’ wall currents. Red is
most positive field, blue is the most negative field, green is
neutral, and coloring is linear. This shows the TE310 mode
which is expected at ∼ 137.46MHz in the 8× 10× 12ft room.

1. Room Modeling

The experiment is in a 8 × 10 × 12ft Faraday cage to
block background electromagnetic fields. The inside of
this cage is complicated and features must be modeled
to get an accurate antenna factor result.

In the frequency range of current interest (30 →
300MHz), conductors of size λmin/4 ≈ 0.25m or larger
act as antennae and thus will have large effects on re-
sults. For example, the 2x3 array of lights at the roof of
the room of diameter 0.25m strongly affect results. Sim-
ilarly, the door handle is of length ∼ 0.7m and must be
modeled carefully. Finer details were also modeled.

As a first-pass verification, the room modes in this de-
tailed model were found. While the details will modify
the exact resonant frequencies, they should be similar to
that of a 8× 10× 12ft resonating cavity, which is what is
found (see figure 6; other frequencies were investigated).

These simulations should also be done for the room
with smaller features excluded (smaller than λmin/4).
Smaller features are excluded in some simulations so that
the mesh resolution can be decreased, allowing for faster
simulations. These features should have minimal effects
on the results, but this should be verified by simulating
the room modes for the room with the features excluded
and comparing fields side-by-side.

While room modes were simulated, more time should
be spent in physically measuring the room modes and
verifying that the simulations show the same modes. This
may include additions of more complicated features in the

room (e.g., batteries, wires, another antenna).

C. Antenna Modeling - Electrical

For AC circuits much larger than the wavelength of the
electrical signal, currents may be thought to flow instan-
taneously. For high frequencies, the wavelength of the
signal is on the same order of magnitude as the size of
the circuit and wave effects must be taken into account.

A well studied phenomenon is the reflection of signals
when they reach an impedance boundary (every conduc-
tor can be modeled as resistors, inductors, and capaci-
tors; some conductor geometries have higher impedances
than others). This effect is typically undesired as it can
lead to standing waves and harder to detect signals, as
the signals are not being transmitted.

For example, the voltage standing wave ratio (VSWR)
is the ratio of the maximum voltage amplitude to the
minimum voltage amplitude anywhere on an antenna. If
there were no reflection at the feed, the VSWR would
be 1. Reflection at the feed, raises the VSWR and is
undesirable.

To fix this issue, electrical circuits are used to mini-
mize/reduce the impedance mismatch. These circuits are
called baluns and they are crucial to effective antenna de-
signs. The simplest balun is just a voltage transformer,
but designs can also become very complicated.

In this experiment, the electrical aspect of the circuit
is expected to be a voltage transformer (see figure 3), but
inability to open the antenna due to warranties prevents
further determination of balun details. Fortunately, the
electrical aspect of this circuit can be (roughly) simu-
lated by manually setting the input impedance to the
simulated antenna. This will lose some fine details, but
at this stage it is OK and those finer details would require
an accurate balun model and opening of the antenna.

D. Antenna Modeling - Physical

The physical modeling of the antenna is also impor-
tant since that affects the antenna factor. Manufacturer
3D models are not available so hand measurements were
made and used to generate a 3D model (see figure 7).

Some geometric details of this antenna are unknown
as the antenna is sealed and cannot be opened. These
details affect the impedance of the antenna and are esti-
mated. For example, at the bottom of the antenna are
two parallel conductors (a transmission line). The radius
of these conductors, their spacing, the length, and more
are all unknowns.

The free-space antenna factor is provided by the man-
ufacturer and can be used to gain confidence in the 3D
model. Iterations of modifying unknown antenna ge-
ometry, simulating the antenna factor, and comparison
to the given antenna factor were done until the shown
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FIG. 7. CAD model of 30→ 300MHz bicon antenna currently
being used in the dark radio experiment.

FIG. 8. Simulated antenna factor of the CAD bicon antenna
(figure 7) compared to the reported value (purple). The simu-
lated antenna factor shows the same rough shape, but is offset
by approximately 3dB from the given antenna factor. This is
likely due to characteristics of the electric circuit not being
included and is currently being investigated. The agreement
between the time domain solver and the frequency domain
solver (fundamentally different processes) provides good evi-
dence that simulation instability is not a current worry.

model with the following antenna factor (see figure 8)
were found.

There are discrepancies between the manufacturer an-
tenna factor and the simulations, but these are currently
finer details to be fixed in the future with a more-detailed
antenna model.

E. Antenna Factor Simulations

The final step in these simulations is to place the an-
tenna inside the detailed room with the ‘Field Source’
excitation running as described in section IV A, and to
measure to feed voltage. Running time-domain simu-
lations at -15dB accuracy with a simplified room model
(fine details excluded), frequency range of 30-300MHz, 25
mesh cells per wavelength, with a bicon (4mm transmis-
sion line gap; 12.5625in transmission line length) in the
room results in antenna factor in figure 9. This antenna
factor is noisy, but noise is expected from the detailed
geometry in the room. Investigation should be done,
however, to determine what peaks are from simulation
errors/instability, and what peaks are real.

These simulations were surprisingly quick (less than
1day) and thus the accuracy and mesh resolution can
be increased for improved results. Additionally finer fea-
tures may also be included. These changes are to identify
any possible simulation instabilities giving faulty results.

Another approach to gain confidence in these results is
to simulate the same scenario with the frequency domain
solver (fundamentally different solution method). This
solver is less developed by CST and less benchmarking
has been done with it at UC Davis because it is unable to
do some simulations of interest, but it should give similar
results to the time domain solver.

V. CONCLUSION

To determine the (effective) antenna factor, a relation-
ship between field strength and feed voltage that would
give the coupling ε of the dark field, CST simulations are
performed. When/if a signal is measured with the phys-
ical experiment, the simulated antenna factor will give
ε.

These simulations are complicated, requiring accurate
models of the antenna, room, and fields. All of these
steps have been modeled and verified, albeit more veri-
fication of all of these steps is greatly desired. Another
point of verification is in the final, antenna factor, sim-
ulation. The resolution and accuracy of this simulation
may be increased to see how the structure of the antenna
factor varies, to determine what of the structure is due
to simulation error and what is real. The goal of these
modifications is to gain confidence in the antenna factor
prediction.

VI. ACKNOWLEDGMENTS

I would like to thank Dr. Tony Tyson for his guidance
and encouragement throughout the summer. I would also
like to thank Dr. Mani Tripathi for being a great mentor
in reminding me of important parts in science that are
more easily forgotten, like communicating your work with
others. I would also like to thank Dr. Rena Zieve and the



8

FIG. 9. Simulated antenna factor of the CAD bicon antenna placed inside the Faraday cage with small details excluded.
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Appendix A: Variables and Conventions

1. Conventions

SI units are used throughout this writeup due to the familiarity of the equations, even if the equations can be made
cleaner by clever unit choices. The metric is set to be (−,+,+,+) throughout the whole writeup.

In equation 2, magnetic charges are included with the convention of magnetic charge units being A·m. After that
equation, we assume ρm = 0 and jm = 0 since there has been no evidence for magnetic charges.

2. Variables

Any variable with an apostrophe ’ is dark. For example, while Aµ is the ‘standard’ four-potential, A′µ is the dark
four-potential. We will only list ‘standard’ variables below

TABLE I. Variables

Symbol Name Definition

A vector potential equation B9
Aµ four-potential (diagonalized) linear combinations of aµ and a′µ[8]
aµ four-potential aµ = (V/c,A)
� d’Alembert operator � = ∂µ∂

µ = −∂2/(c∂t)2 +∇2

B magnetic field N/A
∂µ four-gradient ∂µ = (∂/∂(ct),∇)
E electric field N/A
εi1i2i3i4 4D Levi-Civita symbol εi1i2i3i4 = 0 if ia = ib for any a 6= b

otherwise εi1i2i3i4 = (−1)permutation parity

fµν field-tensor fµν = ∂µaν − ∂νaµ
Fµν field-tensor (diagonalized) Fµν = ∂µAν − ∂νAµ
Gµν dual field-tensor Gµν = εαβµνF

αβ/2
Jµ four-current Jµ = (cρe, je)
je electric current density continuity equation ∇ · je = −∂ρe/∂t

also called je = j
jm magnetic current density magnetic continuity equation ∇ · jm = −∂ρm/∂t
L Lagrangian density L =

∫
LdVolume

L Lagrangian N/A
pµ four-momentum pµ = mvµ

Qe electric charge also called Qe = q
Qm magnetic charge N/A
ρe electric charge density ρe = dQe/dVolume

also called ρe = ρ
ρm magnetic charge density ρm = dQm/dVolume
τ proper time time between events in frame which they occur in

same place
V voltage equation B9
vµ four-velocity dxµ/dτ
xµ four-position (ct, r)

3. Dark Matter Survey

The motivation for dark matter is: observable mass distributions (stars, planets, etc.) give predictions differing from
astronomical observations. A modern example of this discrepancy is the galactic rotation curve: stably orbiting objects
travel at linear velocities increasing with mass enclosed and decreasing with distance from orbit center. Measurements
of linear velocities are higher than expectations at large radii, implying that either our law of gravitation is wrong or
that there is unobserved mass in galaxies at large radii.

There is a zoo of potential dark matter theories (see 10) but, luckily, many experiments searching for one candidate
can rule out other candidates at the same time. The most prevalent candidates are MACHOs, WIMPs, and axions,
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FIG. 10. (taken from [6]) Dark matter zoo of possibly theories.

but other theories such as dark photons are also promising. Incorrect dynamics, also, could explain this discrepancy
and not require dark matter. Given the extended search for dark matter and null results, modified dynamics should
also be taken seriously.

a. Dynamics/Gravitation

A theory (Modified Newtonian Dynamics or MoND[5]) generated to account for this discrepancy is that our laws
of dynamics are flawed for low accelerations. Since most experiments are done on solar system length scales (or
smaller) with high accelerations, deviations from our law of gravitation could have gone unnoticed. With increased
observations on large length scales (galaxies and larger), modifications of the dynamics can be tested. While such
modifications can match some observations (e.g., galaxy rotation curves), none so far have been able to match all
astronomical observations (e.g., galaxy cluster dynamics), making MoND not-promising. There has recently been
evidence[13] making MoND more viable, but many questions are unanswered.

b. MACHOs and WIMPs

Theorems have been generated that posit undetected mass (‘dark matter’) to account for the discrepancies. One
of these such theorems is that of massive compact halo objects (MACHOs), positing matter (planets, dim stars,
black holes) throughout the universe that does not emit light and thus is difficult to detect. This theory of dark
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matter is attractive because it does not require new physics, just improved observations. Gravitational lensing
observation, however, find that MACHO concentrations cannot explain dark matter[7], and thus other theorems must
be investigated.

The arguably most prevalent dark matter theory is currently that of weakly interacting massive particles (WIMPs).
This theory is a consequence of supersymmetry and it posits new physics, stating that there are (relatively heavy)
massive particles everywhere in this universe but that only weakly interact with familiar matter and thus have not
been yet noticed.

Despite many experiments at CERN and throughout the world, no detections of these particles has yet been made,
ruling out much of the parameter space. Some cutting edge experiments, for example, search for this dark matter
through looking for light flashes in large vats of liquid (similar to Super-Kamiokande’s investigation of neutrinos).
One of these such experiments is the LZ experiment at the Sanford Underground Research Facility[1]. These new
experiments can explore more and more parameter space, but the lack of results in previous generations reduces the
parameter space for WIMPs, making them less and less likely as a dark matter candidate.

Appendix B: Field Theory

1. Lagrangians

Light is a traveling excitation of electric and magnetic fields. It, along with the rest of electromagnetism, is fully
described by Maxwell’s equations (see equation 2). Work is simplified in covariant notation in which Maxwell’s
equations become

∂νF
µν = µ0J

µ

∂νG
µν = 0. (B1)

This can be further abstracted with by introducing a Lagrangian density L:

L = − 1

4µ0
fµνf

µν + aµJ
µ (B2)

which gives equation B1 from extremizing the action (using the Euler-Lagrange equation) [19].
We are interested in modifications of Maxwell’s equations by adding ‘dark’ fields f ′µν which come with a ‘dark’ vector

potential a′µ. These are analogous to the standard electric/magnetic fields fµν and the standard vector potential aµ
except the dark counterparts are massive with mass m. These dark fields interact with the ‘standard’ fields through
a coupling ε[8]:

L = − 1

4µ0
(fµνf

µν + f ′µνf
′µν − 2εfµνf

′µν) +
1

2µ0
m2a′µa

′µ + aµJ
µ. (B3)

Specifically, the dark fields are an inclusion of a new U(1) gauge symmetry (effectively stating that physics is invariant
of the phase of the wavefunctions) and the connection between the dark fields with standard fields is called kinetic
mixing, where ε is the strength of this mixing.

We can define Aµ and A′µ as linear combinations of aµ and a′µ so as to simplify this Lagrangian (‘diagonalizing’ it),
giving

L = − 1

4µ0
(FµνF

µν + F ′µνF
′µν) +

1

2µ0
m2A′µA

′µ + (Aµ + εA′µ)Jµ. (B4)

2. Equations of Motion

Treating each component of Aµ and of A′µ as an independent field, we extremize the action to get the equations of
motion. That is, we evaluate:

∂L
∂Aµ

− ∂ν
(

∂L
∂(∂νAµ)

)
= 0 (B5)

and

∂L
∂A′µ

− ∂ν
(

∂L
∂(∂νA′µ)

)
= 0. (B6)
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We do not perform such a calculation in detail because we do not need to. This is because, in this diagonalized
Lagrangian, the terms with Aµ or ∂νAµ look like those in equation B2. Since equation B2 is the Lagrangian that
gives Maxwell’s equations, we also get Maxwell’s equations for the Aµ terms:

∂νF
µν − µ0J

µ = 0 (B7)

The terms with A′µ or ∂νA
′
µ also look like equation B2, except Jµ is replaced with εJµ and there is an additional

term m2A′µA
′µ/2. This additional term just adds m2A′µ to the Euler-Lagrange equation and thus results in:

∂νF
′µν − ε(µ0J

µ) +m2A′µ = 0. (B8)

3. Proca Equations

Maxwell’s equations (and their dark counterpart) directly follow from equations B7 and B8 along with the implicit
definition of the four-potential A as:

E = −∇V − ∂A

∂t
B = ∇×A. (B9)

We do not write out Maxwell’s equations in the standard form (equation 2), however, since the mass term in equation
B8 makes potential formulation more natural. This potential formulation follows from the four-potential definition of
the field tensor:

Fµν = ∂µAν − ∂νAµ (B10)

and identical for the dark version. Plugging this in and choosing the Lorentz gauge:

∂νA
ν = 0, (B11)

we get equations 1 and 3 which are two copies of the Proca equation. The Proca equation is effectively a generalization
of Maxwell’s equations, allowing m 6= 0.

By considering the Lagrangian of a charged particle in the standard and dark fields:

L =
1

2
mvµv

µ + q(Aµ + εA′µ)vµ, (B12)

we get the Lorentz force law by extremizing the action:

dpµ

dτ
= q(Fµν + εF ′µν)vν . (B13)

This law shows the direct consequences of the inclusion of a dark field: there will be forces on charged objects by the
dark fields after a suppression of ε.


