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Abstract

�-solenoid protein (BSP) backbones twist helically to form coils of �-sheets. BSPs are mechan-

ically robust, are easily customizable, and can self-assemble into complexes at room temperature.

BSPs can be fused to small symmetric oligomers to create protein lattices with potential indus-

trial applications ranging from synthetic antibodies to sca↵olding nanomaterials. To assess the

feasibility of creating such lattices, we modeled the formation of one of the simplest cases (a single

hexagon) in E. coli. The hexagon is composed of trimer subunits in which two of the monomers

have BSPs fused to them; six of these subunits form a hexagon. We modeled the formation of these

subunits in E. coli as a series of di↵usion-controlled reactions. We used two models to estimate

the amount of this product and others over time: the deterministic reaction-rate theory and the

stochastic Gillespie Method. Both showed that we could expect about 300 hexagon subunits to

form in 25 minutes in one cell. We conclude that creating our hexagon BSP structure in E. coli

is feasible. Our results will inform the experimental production of the hexagonal BSP structure.

Additionally, we can apply the simulation method we developed to more complex protein lattices.
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INTRODUCTION

One of the key goals of nanotechnology is to make things that are customizable on the

atomic scale. Biomaterials have promise in nanotechnological applications because they

have low toxicity and self-assemble at room temperature. DNA has been successfully used

to build sca↵olds that organize gold nanoparticles in two dimensions [1], to create 2D and 3D

shapes ranging from a smiley face to a box that can be locked and unlocked for drug delivery,

and to create nanomechanical devices [2]. However, there are several problems with DNA

nanotechnology that hinder it from being used industrially. Nearly all DNA nanostructures

are created by chemical synthesis (rather than in vivo processes), which is expensive and

provides low yield of the desired structures [3]. At the moment, real applications of DNA

nanostructures are quite rare.

Proteins have been explored as an alternative biomaterial for nanostructures. While syn-

thesizing engineered proteins also requires synthetic DNA, that DNA is inserted in bacterial

cells in culture, and from just one copy of a synthetic gene, many copies of the protein are

produced. Synthetic protein production is therefore more scalable. While DNA is composed

of 4 structurally similarly nucleic acids, proteins are built of 20 amino acids with widely

varying properties. This gives proteins more conformational variability and functional ver-

satility than nucleic acids [4].

�-solenoid proteins (BSPs) are composed of coiled beta sheets. Beta sheets are strands of

protein held together by hydrogen bonds between the protein backbone. BSPs have func-

tions in nature ranging from antifreeze proteins to prions. Their long, uniform sides can

serve a variety of purposes. In the spruce budworm antifreeze protein (SPAFP), one face

has a 2D array of threonine that hydrogen bonds to the surfaces of ice crystals, preventing

further growth [5]. Inspired by this, our lab has investigated possibilities for modifying sides

for other purposes, ranging from nanoparticle templating to creating synthetic antibodies.

Because BSPs are mechanically robust [6], [7] and highly customizable, we propose using

them as building blocks for nanosca↵olds. By fusing BSPs to small, symmetric oligomers, we

can create a variety of sca↵olds. One sca↵old of interest is a 2D lattice of repeating hexagons.

To investigate whether such a sca↵old could be produced with significant yield, we computa-

tionally modeled the formation of a simpler but related form (a hexagon) composed of BSPs

and symmetric trimers in E. coli. Since creating this hexagonal protein experimentally is
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(a) Foldon trimer from the T4 bacteriophage

(b) Spruce budworm antifreeze protein (SBAFP)

FIG. 1: Proteins used to create monomer building blocks.

(a) Unfused monomer

(b) Fused monomer

FIG. 2: Monomer building blocks. Note that the SBAFP has been modified here to be

longer than in its natural state.

very expensive and time intensive, the purpose of this computational project was to as-

sess the feasibility of creating the hexagon protein and then to determine how experimental

production might be maximized.
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BACKGROUND

Structurally, this project required two types of proteins: a three-part connector and a

long rod. For the three-part connector, we used the trimeric foldon domain of the protein

fibritin from the T4 bacteriophage (“foldon” for short), shown in figure 1a (1RFO and 4NCU

in PDB; see Appendix A for a distinction between the two PDB codes). For the long rod, we

used the spruce budworm antifreeze protein, shown in figure 1b (SBAFP, 1M8N in PDB),

which we then modified to add length. Though there are many proteins that we could have

used to fulfill our structural requirements, we chose these specific proteins because they have

been well characterized in the literature, are easy to produce in E. coli at room temperature,

and have been successfully produced by our collaborators in the Toney biochemistry lab.

From these two proteins, we create two monomers that will serve as the building blocks

for our hexagons. One of these is a monomer from the foldon (figure 2a). The other is

the foldon monomer with the SBAFP covalently bonded to its C-terminus (figure 2b). We

will henceforth refer to the lone foldon monomer as the “unfused monomer,” and the foldon

monomer with the SBAFP as the “fused monomer.”

Creating the monomers in the cell happens in the following manner (note that this was

not actually done in this computational project). First, genes coding for the fused and

unfused monomers are created. Then, those genes are inserted into E. coli. The E. coli

cell transcribes the genes to RNA, then translates the RNA to create the fused and unfused

monomer proteins. In the cytosol, the monomers non-covalently bind to each other to form

various dimer and trimer products (figure 3). The hexagon (figure 4) is composed of trimer

subunits, each with two fused and one unfused monomer (referred to as the u↵ trimer).

When looking at figure 3, note that the uf and fu dimers are distinct species. This is

because the foldon monomer has rotational symmetry but not reflectional symmetry.

Creating the hexagons requires two di↵erent E. coli cultures, as shown in figure 5. In one,

the fused monomer is synthesized with the N-terminus of the SBAFP facing outwards (that

is, not bonded to the foldon). In the other, it is the C-terminus. The u↵ trimers are isolated

from each of these cultures, then combined. The N-termini and C-termini form peptide

bonds. Having two separate cultures would allow us to maximize our yield of hexagons for

the following reason. If the N-terminus and C-terminus monomers were created in the same

culture, then all of the di↵erent protein products (shown in figure 3) could peptide bond to
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FIG. 3: Ten possible products. The u↵ trimer is the subunit that makes up the hexagon.

FIG. 4: The BSP hexagon, composed of u↵ subuints
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FIG. 5: Two di↵erent cultures of E. coli are required to make the hexagons. In one culture

(blue), the fused monomers have the N-terminus facing outwards, while the other (red) has

the C-terminus facing outwards. The u↵ monomers are isolated from each culture and then

combined; they peptide bond to create the hexagons.

FIG. 6: On the left, a conceivable but unrealizable peptide binding orientation of two u↵

trimers is shown. The reason for why such an orientation is possible is shown on the right;

the binding ends of the BSP do not align and a continuous BSP cannot form.

each other. With all the di↵erent peptide bonding options, it is unlikely that six u↵ subunits

would manage to bind to each other rather than to other proteins.

One can imagine a variety of ways that the u↵ subunits could bind to form shapes other

than the planar hexagon–squiggly lines and loops that are not restricted to the plane of the
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page. However, the shape of the binding site at the free end of the BSPs allows only the

hexagon to form. As you can see in figure 6, two BSPs that are not aligned in the proper

orientation will be unable to bind to form a continuous BSP. Though one can imagine three

ways one could orient the triangular prism BSPs shown in figure 6 to make them align to

make one continuous triangular prism, the locations of the binding sites themselves are such

that only one of these configurations is allowed–the configuration that creates the hexagons.

Further specifications about this matter are beyond the scope of this paper.

To guide hexagon production, we must determine how much u↵ we can expect the E. coli

to produce over what time range and maximize the u↵ production rate.

MAXIMIZING UFF PRODUCTION

The cell can be manipulated to produce the fused monomers and unfused monomers at

di↵erent rates. We would like the adjust these rates to maximize u↵ production. If p
f

is

the proportion of monomers that are fused and p
u

is the proportion of monomers that are

unfused (and p
f

+ p
u

= 1), then the proportion of trimers that are of the u↵ configuration

is:

P
uff

= 3p2
f

(1� p
f

)

(Note: the expected term, p2
f

(1 � p
f

), is multiplied by 3 because there are three di↵erent

combinations that form the u↵ trimer: the u monomer and ↵ dimer, f and uf, and f and fu).

dPuff

dpf
= 0 when p

f

= 2/3 and p
u

= 1/3

Therefore, p
f

: p
u

for maximal u↵ production is 2:1. At this ratio, four of every nine trimers

will be u↵ trimers.

Now that we have the fused to unfused production ratio, we must now estimate the actual

production rate for each monomer. Since the factor that can be controlled in experiment is

the number of genes inserted into E. coli, we need to know what f:u gene ratio results in a

2:1 production rate ratio, and use this to estimate the production rate of each protein.

In their modified forms in the fused monomer, SBAFP and the foldon monomer are 180 and

28 amino acids long, respectively. Assuming that there are no non-coding regions in the

genes, we multiply the number of amino acids by three to get the following gene lengths:
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Species protein length (AAs) gene length (BPs)

SBAFP 180 540

Foldon monomer 28 84

u 28 84

f 208 624

(Note: these are the lengths for the foldon monomer and SBAFP molecules as they are

modified for use in our products, not the lengths of the naturally-occurring proteins as given

in their PDB files).

The maximum rate of transcription in E. coli is about 40-80 nucleotides per second, and

the maximum rate of translation is roughly 60 nucleotides per second [8]. Since these rates

are approximately equal, we can define either as the rate-limiting step [8]. Taking the

lower end of the range to be conservative, we used 40 nucleotides per second as the rate of

transcription, which we defined as our rate-limiting step. If we assume that our genes of

interest are continually transcribed, we arrive at the following rates of transcription for our

genes.

Species Rate of transcription (gene/second)

u 0.476

f 0.0641

Let us turn our gene transcription rates into protein production rates. If there is only

one copy of the gene in the genome, then only one RNA polymerase (and, subsequently,

one ribosome) can be working on it at a time. Then, each time the gene is transcribed,

one molecule of the protein is produced. We can therefore change the units of our rate of

transcription from genes per second to molecules per second. Then, the unfused monomer

production rate for the entire cell is:

(0.476 molecules/s)⇥ (1 mole/6.022 ⇤ 1023 molecules)⇥ (1/10�15L) ⇡ 7.9⇥ 10�4µM/s

where 10�15 L, or 1µm3 is the approximate volume of an E. coli cell [8].

For the fused monomer, we get a production rate of approximately 1.1⇥ 10�4µM/s for one

gene. However, we want production of the fused monomers to be twice that of the unfused

monomers. We must multiply the fused monomer production rate by 15 to achieve our 2:1

production ratio, signifying that we require about 15 times as many copies of the fused gene
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as the unfused. This makes intuitive sense: a larger gene (the fused gene) takes a longer

time to transcribe and translate, so you need many more copies of the gene to achieve a 2:1

production ratio. With the 15:1 gene ratio, our final production rates are:

Species production rate (µM/s)

u 7.9⇥ 10�4

f 16⇥ 10�4

ESTIMATING ACCUMULATION OF PRODUCTS OVER TIME

In order to determine how much of the u↵ trimer we can expect the cell to produce, we

considered all possible reactions involving the unfused and fused monomers. These are as

follows:

? ��! u

? ��! f

u + u ��! uu

u + f ��! uf

u + f ��! fu

f + f ��! ↵

uu + u ��! uuu

uu + f ��! uuf

uf + u ��! uuf

fu + u ��! uuf

uf + f ��! u↵

fu + f ��! u↵

↵+ u ��! u↵

↵+ f ��! ↵f

Note that the first two reactions are the production of the monomers from DNA. Each of

these reactions moves forward at a di↵erent rate. We do not include the reverse reactions

(dissociations) because the rates of these are so small that they are negligible; we can assume

that the association reactions are irreversible. We used methods that considered all of these
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association reactions to estimate how the concentration of each of the 10 species varies over

time. The first method used the deterministic reaction rate equations and the second used

the stochastic Gillespie method.

Method 1: Deterministic reaction rate equations

Let us consider an example of a reaction rate equation, say, the reaction between the

unfused monomer and the fused monomer to produce the uf dimer. The equation for this

reaction is an ordinary di↵erential equation that relates the time derivative of the concen-

tration of the product to the concentration of each of the reactants and the rate constant,

k.
d[uf ]

dt
= k

uf

[u][f ] (1)

An increase in the product corresponds to a proportional decrease in the reactants, so

d[f ]

dt
=

d[u]

dt
= �d[uf ]

dt
= �k

uf

[u][f ] (2)

Equation 1 is not a complete equation for the rate of change of concentration of the uf

species. Looking at our reactions listed in the previous section, we see that there are two

other reactions involving the uf species. The corresponding reaction rate equations for these

are,
d[uuf ]

dt
= k

ufu

[uf ][u] (3)

which corresponds to
d[uf ]

dt
= �k

ufu

[uf ][u] (4)

and
d[uff ]

dt
= k

fuf

[uf ][f ] (5)

corresponding to
d[uf ]

dt
= �k

fuf

[uf ][f ] (6)

By adding all of our terms for the rate of change of concentration of uf, we arrive at a final

equation:
d[uf ]

dt
= k

uf

[u][f ]� k
ufu

[u][uf ]� k
fuf

[f ][uf ] (7)
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Repeating this process for each species involved, we end up with a set of 10 coupled nonlinear

first order ODEs:

d[u]

dt
= c

u

� 2k
uu

[u]2 � 2k
uf

[u][f ]� k
uuu

[u][uu]� k
ufu

[u]([uf ] + [fu])� k
uff

[u][ff ] (8)

d[f ]

dt
= c

f

� 2k
ff

[f ]2 � 2k
uf

[u][f ]� k
uuf

[f ][uu]� k
fuf

[f ]([uf ] + [fu])� k
fff

[f ][ff ] (9)

d[uu]

dt
= k

uu

[u]2 � k
uuf

[f ][uu]� k
uuu

[u][uu] (10)

d[uf ]

dt
= k

uf

[u][f ]� k
ufu

[u][uf ]� k
fuf

[f ][uf ] (11)

d[fu]

dt
= k

uf

[u][f ]� k
ufu

[u][fu]� k
fuf

[f ][fu] (12)

d[ff ]

dt
= k

ff

[f ]2 � k
uff

[u][ff ]� k
fff

[f ][ff ] (13)

d[uuu]

dt
= k

uuu

[u][uu] (14)

d[uuf ]

dt
= k

ufu

[u]([uf ] + [fu]) + k
uuf

[f ][uu] (15)

d[uff ]

dt
= k

fuf

[f ]([uf ] + [fu]) + k
uff

[u][ff ] (16)

d[fff ]

dt
= k

fff

[f ][ff ] (17)

(18)

Note here that c
f

and c
u

are production rates–that is, the rates at which the concentrations

of the monomers increase due to their production from DNA. Recall from the previous

section that our production rates are:

Species production rate, c (µM/s)

u 7.9⇥ 10�4

f 16⇥ 10�4

Note the distinction between seemingly similar rate constants. Since the combination of

u and f to produce uf and fu involved the same reactants (and the two binding sites on

each monomer are favored equally), the rate constant k
uf

is the same for both reactions.

However, u↵ can be created by the combination of f and uf or fu, or u and ↵. The uf/fu

reactions with f have one rate constant, k
fuf

, while the reaction between u and ↵ has another

rate constant, k
uff

.
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Rate constants

To make use of these equations, we had to determine the values of each of the rate con-

stants. Ideally, one would determine the rate constant for each reaction experimentally.

However, since most of these complexes have yet to be produced experimentally, we used

models to estimate the rate constants. From the paper “Very Fast Folding and Association

of a Trimerization Domain from Bacteriophage T4 Fibritin” by Güthe et al, the experimen-

tal bimolecular rate constants for foldon dimer and trimer formation (that is, uu and uuu

production) are 1.9(±0.5)⇥ 106 M�1s�1 and 5.4(±0.3)⇥ 106 M�1s�1, respectively, for asso-

ciation experiments performed in water [9]. For the other reactions, we attempted several

di↵erent methods for approximating rate constants.

Our association reactions are di↵usion-limited. This means that if the two binding sites

come into contact, they will always bind. The rate-limiting factor is the time it takes for

two proteins to di↵use through the cell to come into proximity of each other, and to rotate

so that their binding sites align. We modeled the reaction between two of our protein species

as a reaction between two spheres. Though the spherical representation obviously does not

reflect the physical reality of the situation, the more precise models we considered using

were deemed too complicated and time-intensive relative to the prospective gains for this

project. To judge the success of a model, we compared the values it gave for k
uu

and k
uuu

in water to the experimentally known constants.

We modeled the association of two proteins as a reaction between two spheres, each with

a specific binding patch (see figure 7). The equation we used for estimating the di↵usion-

controlled reaction rate constant for the association of molecule A and molecule B is:

k
AB

= ⇡(D
A

+D
B

)(r
A

+ r
B

) sin ✓
A

sin ✓
B

sin

✓
✓
A

+ ✓
B

2

◆
(19)

where D is the Stokes-Einstein di↵usion coe�cient

D =
k
B

T

6⇡⌘r
(20)

Equation 19 here is listed as equation 6 in the cited paper by Berg and von Hippel [10].

Note that the equation in that paper uses the small angle approximation; we did not use it

here because our largest angle was ⇡

6 .

The following values were required: viscosity of the fluid (⌘), and di↵usion coe�cient (D),
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FIG. 7: Binding patch geometry for two molecules with di↵erent binding patch sizes. [10]

radius (r), and binding patch angle (✓) for each molecule, assuming spherical molecules. We

needed the viscosity of water in order to compare our calculations to the experimental rate

constants found in the Güthe et al. paper [9], which were done in water. We needed the

viscosity of the cytoplasm of E. coli to model the intracellular environment for our reactions.

⌘
water

⇡ 1.0 mPa·s

⌘
cytoplasm

⇡ 25 mPa·s [11]

Using the radius of gyration found in VMD (Visual Molecular Dynamics, a molecular mod-

eling and visualization program) as an estimate of the molecular radius, we get the following

radii for monomers and dimers:

Species radius (m)

u 0.939⇥ 10�9

f 2.25⇥ 10�9

uu 1.06⇥ 10�9

uf/fu 2.57⇥ 10�9

↵ 3.46⇥ 10�9

Next, we found the di↵usion coe�cient by using the Stokes-Einstein relation (see equation

20), where k
B

is Boltzmann’s constant and T = 293 K.

For u and uu in water:
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Species D (m2/s)

u 2.29⇥ 10�10

uu 2.03⇥ 10�10

For the monomers and dimers in the cytoplasm of E. coli :

Species D (m2/s)

u 9.14⇥ 10�12

f 3.81⇥ 10�12

uu 8.11⇥ 10�12

uf/fu 3.34⇥ 10�12

↵ 2.48⇥ 10�12

Binding patch size

Since the monomers are held together by hydrogen bonds, we used the cross sectional area

of a hydrogen bond as the radius of the binding patch size for two monomers binding. We

found inspiration from the Torshin et al paper [12] for estimating the binding patch size for

a hydrogen bond. Since the angle between the donor atom, bound hydrogen, and accepting

atom must be between 90 and 180 degrees, and the accepting atom could be located at

any rotational location around the axis formed by the donor atom and the hydrogen, we

ended up with a hemispherical shell with the radius of a hydrogen bond centered at the

hydrogen atom, anywhere on which the accepting atom could bind to form the hydrogen

bond. This hemispherical shell is our binding patch area. However, since our model requires

us to approximate our binding patch as a 2D circle (see again figure 7), we reduced our

binding patch area to ⇡r2, where r is the length of a hydrogen bond. We found the average

length for the hydrogen bond between monomers by using VMD to measure the length of

hydrogen bonds between monomers in 10 di↵erent frames (that is, at 10 di↵erent moments

while the molecule is jiggling). Therefore, for monomers,

r
patch,mono

= 0.185 nm

For dimers, the reaction patch is larger, since two hydrogen bonds form instead of one.

Taking a cue from Xie et al, 2016 [13], we said that for the uu dimer, the reaction patch

is about 1/6 of a sphere, leading to ✓ = ⇡

6 . Using r
patch

= r
uu

sin ✓, this corresponds to a

reaction patch size of

r
patch,dim

= 0.530 nm
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Because the binding patch size is the same for all of the dimers, the same binding patch

radius was used for all dimers. Using ✓ = sin�1(r
patch

/r
x

) (where x is the relevant species),

we arrived at the following binding patch angles:

Species ✓ (radians)

u 0.198

f 0.0821

uu 0.524

uf/fu 0.207

↵ 0.154

Plugging the appropriate values into equation 19 for the formation of the uu dimer and uuu

trimer in water, we arrive at the following rate constants, compared to the experimental

values:

Species Calculated k (M�1s�1) Experimental k (M�1s�1)

uu 1.23⇥ 107 1.90⇥ 106

uuu 5.66⇥ 107 5.40⇥ 106

The calculated rate constants are an average of 12.5 times larger than the experimental rate

constants. Since the only di↵erence between our rate constants in water and in E. coli is

viscosity (and we are using experimental values for viscosity), we expect our calculations in E.

coli to be 12.5 times too large as well. It is di�cult to discern precisely why our calculations

are larger than the experimental values because there are many layers of approximation

involved here, from modeling the molecules as spheres to estimating a circular binding

patch size. To better approximate our rate constants, we divided the calculated values for

our rate constants by 12.5 to arrive at our final rate constants.

Species Calculated k (M�1s�1) Experimental k (M�1s�1)

uu 1.54⇥ 106 1.90⇥ 106

uuu 7.07⇥ 106 5.40⇥ 106

To translate these to reactions in E. coli, we simply substitute the viscosity of the cytoplasm

of E. coli for the viscosity of water to arrive at the following rate constants:
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Reaction k symbol k value (M�1s�1)

u + u k
uu

6.2⇥ 104

u + f k
uf

2.2⇥ 104

f + f k
ff

4.5⇥ 103

u + uu k
uuu

2.8⇥ 105

f + uu k
uuf

1.1⇥ 105

u + uf and u + fu k
ufu

8.4⇥ 104

f + uf and f + fu k
fuf

2.0⇥ 104

u + ↵ k
uff

6.4⇥ 104

f + ↵ k
fff

1.3⇥ 104

By inserting our calculated rate constants into our set of 10 ODEs and computationally

integrating them over time, we graphed how the concentration of each species varies over

time, shown in figure 8. The monomers are constantly being produced from DNA and

consumed by the dimer- and trimer-forming reactions; the dimers are being formed from

monomers and consumed to form trimers; the trimers are being formed from monomers

and dimers and are not being consumed in any reaction. Therefore, the concentration of

monomers and dimers should reach equilibrium concentrations where the producing and

consuming reactions balance out and the trimers should continue to increase indefinitely.

This trend is seen in figure 8. Additionally, u↵ ultimately becomes the majority species, as

we expected from optimizing our production rate ratios.
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FIG. 8: The change in concentration of our 10 species over time, produced by a python

script that solves our set of 10 coupled nonlinear di↵erential equations over 30 minutes.

After about 15 minutes, the u↵ trimer is the major product. This model estimates that

after 25 minutes of protein production, about 300 molecules of the u↵ trimer have been

produced in a single E. coli cell.

Method 2: Gillespie algorithm

The Gillespie method is a stochastic simulation algorithm that accounts for two assump-

tions in the reaction rate equation method. First, the reaction rate equations treat the

number of molecules as a continuous quantity rather than a discrete quantity. Second, the

reaction rate equations are deterministic, though molecular interactions are not truly deter-

ministic but rather probabilistic. While the e↵ects of these assumptions are inconsequential

when dealing with a large number of molecules, they become significant when dealing with
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a small number of molecules, as we are.

We can use the Gillespie Stochastic Simulation Algorithm with the assumptions that the

molecules are su�ciently complex so that the e↵ects of quantum mechanics are negligible

(the molecules mostly follow Newton’s laws of motion), and that the solution is well mixed

(meaning that non-reactive collisions occur more frequently than reactive ones), so the fast

dynamics of the system can be neglected and the system can be represented simply by the

number of molecules in it [14]. We can turn our reaction rate equations into discrete, proba-

bilistic equations for use in the Gillespie method; these are called propensity functions. The

probability that a certain reaction j occurs within time dt is a
j

dt, where a
j

is the propensity

function for the reaction. The propensity function for a reaction between A and B to form

AB is

a
AB

= c
AB

R
A

R
B

where R
A

and R
B

are the number of molecules of each reactant, and the c
AB

is a rate

constant derived from the old rate constant k
AB

as

c
AB

= k
AB

/(N
A

V ) (21)

[15]. Here, V is the volume of an E. coli cell (about 1 cubic micrometer, or 1⇥10�15 liter), and

N
A

is Avogadro’s number (to convert the dimensions from moles�1s�1 to molecules�1s�1).

However, if the two species being counted are identical, then

a
AA

= c
AA

R
A

(R
A

� 1)/2

where R
A

(R
A

� 1)/2 is the number of distinct pairs of molecule A, and

c
AA

= 2k
AA

/(N
A

V )

[15]. We apply this to our situation as follows. The state of our system is recorded with

the column vector, X(t), which contains the number of molecules of each species at a given
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time:

X(t) =

2

666666666666666666666664

X0(t)

X1(t)

X2(t)

X3(t)

X4(t)

X5(t)

X6(t)

X7(t)

X8(t)

X9(t)

3

777777777777777777777775

=

2

666666666666666666666664

u

f

uu

uf

fu

ff

uuu

uuf

uff

fff

3

777777777777777777777775

(22)

We then get fourteen propensity equations, corresponding to our fourteen reactions. Note

here that the production rates for production of the fused and unfused monomers from DNA

(formerly c
u

and c
f

) are now q
u

and q
f

, relabeled so as not to confuse them with our new

rate constants and to note dimensional changes; q
u

= c
u

N
A

V .

a0 = q
u

(23)

a1 = q
f

(24)

a2 = c
uu

X0(t)(X0(t)� 1)/2 (25)

a3 = c
uf

X1(t)X0(t) (26)

a4 = c
uf

X0(t)X1(t) (27)

a5 = c
ff

X1(t)(X1(t)� 1)/2 (28)

a6 = c
uuu

X0(t)X2(t) (29)

a7 = c
uuf

X1(t)X2(t) (30)

a8 = c
ufu

X0(t)X3(t) (31)

a9 = c
ufu

X0(t)X4(t) (32)

a10 = c
fuf

X1(t)X3(t) (33)

a11 = c
fuf

X1(t)X4(t) (34)

a12 = c
uff

X0(t)X5(t) (35)

a13 = c
fff

X1(t)X5(t) (36)
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With the Gillespie method, we assume that only one reaction occurs at a time. The prob-

ability of a reaction j occurring is a
j

/
P13

i=0 ai. To determine which reaction happens next,

we cumulatively sum the propensity functions and divide by the total sum of the propensity

equations, so that the reaction probabilities are distributed proportionate to the values of

their propensity equations over the number line from 0 to 1. This creates a vector that looks

like this:

a
cumsum

=

2

666666666666666664

a0P13
i=0(ai)

a0 + a1P13
i=0(ai)

a0 + a1 + a2P13
i=0(ai)

...

3

777777777777777775

(37)

Next, we take a random number, ⇠1, from a uniform distribution from 0 to 1. The index

of the smallest entry of a
cumsum

that is greater than this number will be the reaction that

occurs next. To determine when this reaction will occur, we pick another random number,

⇠2, between 0 and 1 and set the time step (⌧) to

⌧ =
ln(1/⇠2)P13

i=0(ai)
(38)

To update our state vector to show that the reaction occurred, we use a reaction matrix,

V, in which the rows are species (in the same order as for X(t)) and the columns are

reactions, each indicating how the number of molecules of each species changes when that

reaction occurs. Starting with column 0, reactions are listed in the same order as their

propensity equations are listed on the previous page. If the reaction matrix V were split up

into 14 column vectors, each representing the change of state brought about by a particular

reaction, those vectors would form a set of all possible reactions involving the fused and

unfused monomers. It is for ease of use and notation that they are represented together as
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a matrix.

V =

2

666666666666666666666664

1 0 �2 �1 �1 0 �1 0 �1 �1 0 0 �1 0

0 1 0 �1 �1 �2 0 �1 0 0 �1 �1 0 �1

0 0 1 0 0 0 �1 �1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 �1 0 �1 0 0 0

0 0 0 0 1 0 0 0 0 �1 0 �1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 �1 �1

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

3

777777777777777777777775

(39)

We add the column from V that corresponds to the next reaction to X(t) to update our

state at time t+ ⌧ . Then, the process repeats. This is condensed into the following steps:

1. Evaluate a
i

(X(t))13
i=0 and a

sum

(X(t)) :=
P13

i=0 ai(X(t)).

2. Draw two independent uniform random numbers from 0 to 1, ⇠1 and ⇠2.

3. Set j to be the smallest integer satisfying
P

j

i=0 ai(X(t)) > a
sum

(X(t)).

4. Set ⌧ =
ln(1/⇠2)P13

i=0(ai)
.

5. Set X(t+ ⌧) = X(t) + V [:, j].

6. Return to step 1.

These steps and the previous discussion were paraphrased from the cited Higham paper [16].

For further information about the theory behind the Gillespie method and applications of

it, refer to this source as well as references [14] and [15].

We wrote these steps into a python code to plot the number of molecules of each species

present over time. In figure 9 we see a sample run of the Gillespie algorithm. As with

the deterministic rate equations method, we see that the Gillespie method also predicts

the production of about 300 u↵ trimers after 25 minutes of protein production. To assess

how widely the results varied between di↵erent runs of the Gillespie algorithm, we ran it

multiple times. Four runs are shown simultaneously in figure 10. Though there is variance

between the runs, the expected number of u↵ trimers at 25 minutes is around 300 and u↵

is consistently the dominant species after about 18 minutes.
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FIG. 9: The change in number of molecules of our 10 species over time, as plotted by the

Gillespie algorithm.

DISCUSSION

Our work suggests that making the BSP hexagons as described in this paper is feasi-

ble. Unfortunately, it proved challenging to find other research to compare our results to;

it appears that number of molecules output by each cell and output rate per cell are not

commonly used metrics.

Additionally, the methods made to arrive at approximations here are far from reflecting

experimental reality. Many factors that influence protein production rates - such as reg-

ulation of gene expression and the extra DNA that is introduced into the genome along

with the target gene when using plasmids for gene transfer - were not included here. This

is an approximation. The method we used to estimate rate constants for our reactions is

overly simplistic and involves a number of broad assumptions. When reviewing these, it is
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FIG. 10: Four runs of the Gillespie algorithm plotted simultaneously.

important to keep in mind the goals of this project. We do not aim here to form a precise

model and explanation of how these reactions would happen in the cell, but rather to ob-

tain a rough estimate of the protein yield we could expect when actually performing this

experiment, so as to judge whether performing this experiment would be worthwhile.

Since the results of this project suggest that the BSP hexagons could be created in su�cient

yield, the next step will be for our collaborators (the Michael Toney lab in the Department

of Chemistry) to carry out the experiment in the lab, guided by our findings here. From

our work here, they will know to use a 15:1 gene ratio to achieve the desired 2:1 fused to

unfused monomer ratio, and will have estimates for the amounts and timescale of protein

production.
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Appendix A: 1RFO versus 4NCU

Di↵erent papers referring to the T4 bacteriophage fibritin foldon domain use 1RFO and

4NCU as the PDB codes for the protein. Comparing the two proteins from their PDB files

in VMD, 4NCU appears to be just one monomer of the foldon domain, whereas 1RFO is

the complete trimer. Additionally, 1RFO has 4.5 times as many atoms as 4NCU, whereas

one would expect the trimer to have 3 times as many atoms as the monomer. Upon further

examination, it appears that the 4NCU protein does not include hydrogen atoms, whereas

1RFO does.
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