
Generation and Prediction of Markov Processes

Joshua B. Ruebeck∗
Physics Department, Carleton College and

Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

(Dated: August 24, 2016)

We present the minimal generators for all binary Markov chains and calculate Cg, their generative
complexity. While this is in general a non-convex minimization that must be calculated numerically,
we are able to find an analytical solution for this particular set of processes. We find that generically,
but not universally, processes in this class have strictly less generative complexity than statistical
complexity (Cg < Cµ). We then examine other properties of the minimal generators, including
their crypticity, oracular information, and gauge information, and compare the minimal generators
to minimal predictors. These results, besides being interesting in their own right, also suggest
properties of minimal generators that may generalize and aid in finding the minimal generators of
more complex processes.

INTRODUCTION

In real-world examples of stochastic processes, there ex-
ist some that are simultaneously being generated by one
agent and predicted by another. For example, a mouse
being chased by a fox desires to choose a path that is
difficult for the fox to predict. However, the mouse itself
has limited computational resources, and so would also
like the path to be easy to generate. Are these different
tasks, and if so, do there exist processes that are easier
to generate than predict?

We are able to address these questions quantitatively
through the use of hidden Markov models (HMM). The
statistical complexity, Cµ, of a process is the state-
entropy of its minimal predictive HMM, also called the
ε-machine. Cµ quantifies how hard a process is to pre-
dict. The ε-machine representation of the process is well-
studied and can be constructed for arbitrary processes
[1, 2]. The generative complexity, Cg, of a process is the
state-entropy of its minimal generative HMM. This is in
general much harder to calculate, as it involves a non-
convex constrained minimization over high-dimensional
spaces. There are some known bounds on Cg and re-
strictions on the construction of generative HMM’s [3],
but this area has received significantly less attention than
the predictive case and is less well understood.

In this paper, I present a construction of the minimal
generators for an arbitrary stationary binary Markov pro-
cess. This allows the calculation of Cg as well as inves-
tigation into other properties of generative models. By
comparing minimal generators with minimal predictors,
we can begin to understand the differences between the
tasks of generation and prediction and where one type of
model might be advantageous over the other.

COMPUTATIONAL MECHANICS
BACKGROUND

Elements of information theory

Let Z be a random variable (RV) with alphabet A and a
probability mass function p(z) for z ∈ A. The (Shannon)
entropy of Z is defined as [4]

H(Z) = −
∑
z∈A

p(z) log2 p(z). (1)

Entropy can have different interpretations in different
contexts. Roughly, it quantifies the amount of uncer-
tainty present in the random variable and can often be
interpreted as the amount of information contained. An-
other useful quantity is the conditional entropy,

H(Z|Z ′) = −
∑
z∈A

∑
z′∈A′

p(z, z′) log2 p(z|z′), (2)

where p(z, z′) is the probability of z and z′, and p(z|z′)
is the probability of z given Z ′ = z′. The conditional en-
tropy describes the uncertainty in Z given knowledge of a
second random variable Z ′. Using these two tools, we can
define the mutual information of two random variables:

I(Z;Z ′) = H(Z)−H(Z|Z ′). (3)

In other words, the mutual information is the differ-
ence in uncertainty between Z with no prior knowledge
and Z given knowledge of Z ′. It usually represents the
amount of information shared between two random vari-
ables. These quantities can be represented in a Venn-like
diagram called an information diagram, with the size of
various circles representing the entropy of a process, and
the size of their intersections corresponding to the mutual

2

A B0:1/2
1:1/2

1:1/2
0:1/2

(a)

A1:1/2 0:1/2

(b)

A B1:1/2
0:1/2

1:1
(c)

FIG. 1. Model representations of the Fair coin (a, b) and
Golden Mean (c) processes. Models (b) and (c) are the
ε-machine representations of their respective processes.

information.

Processes and hidden Markov models

A stochastic process over an alphabet A is a bi-infinite
sequence of random variables

. . . X−2X−1X0X1X2 . . . (4)

characterized by a joint probability distribution over all
strings . . . x−2x−1x0x1x2 . . . with xt ∈ A. A Markov
chain is a process where this probability distribution can
be factored into single-symbol conditional distributions:

Pr(. . . X−1X0X1X2 . . . = . . . x−1x0x1x2 . . .)
= . . .Pr(X0 = x0|X−1 = x−1)

× Pr(X1 = x1|X0 = x0)
× Pr(X2 = x2|X1 = x1) . . . (5)

In other words, the probability distribution of the RV at
time t only depends on the previous symbol generated. A
time-invariant Markov chain additionally satisfies ∀t ∈ Z
and ∀x0, x1 ∈ A

Pr(Xt = x1|Xt−1 = x0) = Pr(X1 = x1|X0 = x0). (6)

When I refer to a Markov chain (or synonymously, a
Markov process), time invariance is implicit. For two
examples of Markov processes, we can take the Fair Coin
and the Golden Mean processes. The Fair Coin is gen-
erated by flipping a coin at every time step, and writing

down a 1 for every heads and a 0 for every tails. A string
generated by the process might look like

011101101010111010101001001011. (7)

The Golden Mean has a little more structure: If the pre-
vious symbol was a 1, then a coin is flipped as in the
Fair Coin. If the previous symbol was a 0, then the next
symbol must be a one. A sample string looks like

011101011101110111010111110111. (8)

Clearly there can never be more than one consecutive 0.
Markov processes can all be characterized uniquely by
their transition matrix, which describes the probability
distribution of the current symbol (at time t) given the
last symbol (at time t−1). For the Fair Coin and Golden
Mean, they are

pXt|Xt−1 =
(0 1

0 1/2 1/2
1 1/2 1/2

)
(9)

and

pXt|Xt−1 =
(0 1

0 0 1
1 1/2 1/2

)
, (10)

respectively. So, for example, we can read off that for
the Golden Mean, the probability of seeing a 1 given a
previous 0 is 1, while the probability of seeing a 0 given a
previous 0 is 0. If the previous symbol was a 1, then there
is equal probability 1/2 of seeing either symbol next.

We can also represent each process by a model (machine)
representation, shown in Fig. 1. To generate a process
from a machine, choose a state to start in. Each edge
is marked as ‘symbol:probability.’ From a state, you can
move along an edge with the labeled probability while
emitting the given symbol. These representations are
not unique, as emphasized by the two representations of
the fair coin shown.

The information diagram in Fig. 2 is a useful way of
visualizing properties of these models. It describes the
amount of information contained in and shared between
the process’s past, the model, and the process’s future.
The size of each RV’s circle is given by its Shannon en-
tropy. We can define a generator (which I will also refer
to as model) as any random variable R that contains all
of the region labeled E. This means that any information
shared between the past and future is contained in the
model. A predictor is additionally constrained to have

3

X:0 X0:

R

E
χ ζ

ϕ

FIG. 2. An information-diagram of a process’s past X:0 and
future X0: with a model R. The quantities labeled are the
excess entropy E = I(X:0;X0:), crypticity χ = I(X:0;R|X0:),
oracular information ζ = I(X0:;R|X:0), and gauge informa-
tion ϕ = H(R|X:0, X0:).

ϕ, ζ = 0. The minimal predictor is the smallest pre-
dictor (entropy-wise), and has been well studied as the
ε-machine of the process [1, 2]. The ε-machine can be ef-
ficiently constructed for any process, and the statistical
complexity Cµ of a process is defined as the state-entropy
of its ε-machine. To calculate state-entropy, one can let
a process run for a long time and then take the Shannon
entropy of the resulting distribution over time spent in
each state (or do the equivalent analytically).

GENERATIVE COMPLEXITY: THE GENERAL
PROBLEM

The generative complexity is defined as

Cg = min
X:0→R→X0:

H(R). (11)

Here X:0 → R→ X0: indicates that the past, model, and
future form a Markov chain, which is equivalent to the
condition that R contains all of E:

Pr(X:0, R,X0:) = Pr(X:0) Pr(R|X:0)Pr(X0:|R)
⇐⇒

I(X:0, X0:|R) = 0. (12)

The model R that achieves Eq. 11 is a minimal genera-
tor of the process. In general, this minimization is non-
convex, making it difficult to find the global minimum
with certainty. Additionally, it takes place in many di-
mensions with many constraints—the simplest case be-
ing 8 dimensional with 6 constraints. The size of these
problems means that, for a generic process, they must
be solved numerically. Development of this code is un-
derway, but has been halted by additional complications
arising from extra constraints that were not initially con-
sidered. Luckily, the simplest case is accessible analyti-

p

q

0 1

1

Golden mean

Perturbed coin

Biased coin
Fair coin

Period-1 ‘0’s

Period-1 ‘1’s
Period-2

Period-1

A B0:1− p
1:p

1:1− q
0:q

FIG. 3. The process space and ε-machine for binary Markov
chains parametrized by p, q ∈ [0, 1]. Edge cases and special
cases are labeled in color. The Golden Mean shown along
two edges of the space is a generalization of the Golden Mean
presented in Fig. 1 and Eq. 10

A B

0: α(β+p−1)
β−α

1: (1−α)(β−q)
β−α 0: α(1−p−α)

β−α

1: (1−α)(q−α)
β−α

0: β(1−p−α)
β−α

1: (1−β)(q−α)
β−α

0: β(β+p−1)
β−α

1: (1−β)(β−q)
β−α

FIG. 4. α ∈ [0,min(q, 1 − p)] and β ∈ [max(q, 1 − p), 1] give
the complete set of 2-state machines that generate a binary
Markov chain given by p, q.

cally and allows us to build intuition for the more com-
plicated cases as well as establish heuristics and hypothe-
ses for characteristics of minimal generators in general.
Additionally, since these models have largely not been
studied up to this point, even this simplest case provides
the first example of provably minimal generators as well
as the first examples of processes where Cg < Cµ.

4

p

q

0 1

1

α

β

α

β

α

β

A B1: 1−p−q
1−p

1: q
1−p

0:1− p

1: pq
1−p

1: p(1−p−q)
1−p

A B1: 1−p−q
1−p

1: q
1−p

0:1− p

1: pq
1−p

1: p(1−p−q)
1−p

A B

0:1− p

1:1− q
1:p+ q − 1

0:1
A B

1:1

0:1− p

1:1− q

0:p+ q − 1

FIG. 5. The minimal generators for all binary Markov chains. The three regions of the process-space (parametrized by p, q)
result in three different cases for minimization. A characteristic model-space (parametrized by α, β) is shown, with a heat-
map of the entropy H(R) superimposed. Each global minimum (of which there are two in the top case) results in a minimal
generator, connected to it by an arrow.

RESULTS

Analytical solution for Binary Markov chains

Any binary Markov process can be characterized by a
transition matrix

pXt|Xt−1 =
(0 1

0 1− p p

1 q 1− q

)
(13)

for p, q ∈ [0, 1]. The matrix is constrained so that all
rows add to one (called row-stochastic), which ensures
valid probabilities. It has a stationary distribution

pXt
=
(0 1

q
p+q

p
p+q

)
, (14)

which describes the fraction of 0’s and 1’s emitted by
the process. The stationary distribution is found by tak-
ing the left-eigenvector of pXt|Xt−1 that has eigenvalue 1.
We can construct its ε-machine for p 6= 1 − q, shown in
Fig. 3. For p = 1−q (the line labeled “Biased Coin”), the
ε-machine is a single-state machine that simply has the
probability of seeing a 0 or 1 as its edges. This disconti-
nuity is termed “causal collapse,” since there is no longer
any dependence on the previous symbol; each symbol is

independent and identically distributed and the process
can now be entirely characterized by its stationary dis-
tribution p(0) = p, p(1) = 1 − p. In the same figure
is a visualization of the space of binary Markov chains;
special cases of interest are marked, including the Fair
Coin and a generalization of the Golden Mean already
discussed.

In order to find the minimal generator, we first enumer-
ate all possible generators of the process. It can be shown
[3] that in this case, the minimal generator will be a two-
state model. From either expression of Eq. 12 along with
row-stochasticity, we can describe any model of this pro-
cess with two transition matrices:

pXt|R =
(0 1

A α 1− α
B β 1− β

)
(15)

and

pR|Xt−1 =
(A B

0 β−(1−p)
β−α

(1−p)−α
β−α

1 β−q
β−α

q−α
β−α

)
. (16)

The eight elements of these matrices are the eight di-
mensions mentioned earlier; four of the constraints come
from row-stochasticity, while two come from Eq. 12.

5

From these transition matrices, we can calculate the ma-
chine representation as shown in Fig. 4. It is worth re-
emphasizing at this point that p, q parametrize our pro-
cess space while α, β parametrize our model space. For a
given p and q, scanning through values of α and β will
result in the same process but in a different model of
that process. With these representations, we can now
calculate the state-entropy to be

H(R) =
[
(q − α(p+ q)) log2

(
α(p+ q)− q

(α− β)(p+ q)

)
+ (α(p+ q)− q) log2

(
q − β(p+ q)

(α− β)(p+ q)

)]
/ [(α− β)(p+ q)] . (17)

Fig. 5 shows the three different cases that emerge when
minimizing H(R). For three representative points in pro-
cess space, the model space has been plotted as a heat-
map of H(R). In one case, we observe that the global
minimum is in the bottom left; in another, the top right.
For the entire region p+ q > 1, there are two equivalent
global minima.
By substituting the values of α, β found in the minimiza-
tion, we obtain the minimal generators which are shown
in the same figure connected to their corresponding min-
ima.

Features of generative models

With these models in hand, we can calculate the genera-
tive complexity Cg of a process, which we plot in Fig. 6a.
The difference between Cg and Cµ, which we call the pre-
dictive overhead, is shown in Fig. 6c. We can also calcu-
late other properties of interest. Since the ε-machine is
constrained to have ϕ, ζ = 0, we are interested in seeing
the behavior of these quantities along with their counter-
part χ for the minimal generators. These are plotted in
Fig. 7.

DISCUSSION & CONCLUSION

Even in this simplest case, many features emerge that
suggest possible general features of minimal generators.
First of all, from Fig. 6, we see that for the vast majority
of our process space, Cg < Cµ. The only cases in which
Cg = Cµ are along all four edges of the process space
(Fig. 3) and along the diagonal p = 1− q. Each of these
cases involves some kind of loss of support; the edges
all have some element of their transition matrix equal to

(a) Generative complexityCg (b) Statistical complexity Cµ

(c) Predictive overhead:
Cµ − Cg

FIG. 6. A comparison of the generative complexity and sta-
tistical (predictive) complexity. The predictive overhead is
highest when p is close but not equal to 1− q

(a) Excess entropy E (b) Crypticity χ

(c) Oracular information ζ (d) Gauge information ϕ

FIG. 7. The informational breakdown of the state complexity
of a minimal generator.

0, and the line p = 1 − q is actually independent and
identically distributed rather than a true Markov chain.
Interestingly, the region of maximum predictive overhead
(Fig. 6c) is centered around the Biased Coin (p = 1 −
q) diagonal. This suggests that processes ‘near’ causal
collapse may in general have a large difference between
Cg and Cµ.
Additionally, we notice that the minima observed in
model space occur at the extreme allowed values of α

6

and β. While in general this type of parametrization is
not possible, this suggests a place to look for minima,
which may increase the efficiency of finding them.
While ε-machines are provably unique [1, 2], we have
found an example of two non-isomorphic minimal gen-
erators for the same process (any process with p+q>1,
the upper right region Fig. 3).
Fig. 7 shows that generically, all of the atoms of the min-
imal generators are nonzero. In the upper-right portion
of the plot, the symmetry breaking is due to the fact
that there are two minimal generators, and we have only
shown the values calculated for one of the two. The other
machine’s crypticity and oracular information are iden-
tical to the oracular information and crypticity (respec-
tively) shown.
Besides demonstrating conclusively the non-equivalence
of Cµ and Cg, these minimal generators show a number
of traits that provide insight into the generative nature of
Markov chains. Additionally, this work lays the ground-
work for further numerical pursuit of higher Markov or-
der, larger-alphabet processes.

ACKNOWLEDGMENTS

I would like to thank Prof. James Crutchfield, Dr. John
Mahoney and Dr. Ryan James for their guidance on this
project. Thanks to Prof. Rena Zieve for coordinating
this REU and the NSF for funding this opportunity.

∗ josh.ruebeck@gmail.com
[1] James P. Crutchfield. Between order and chaos. Nat Phys,

8(1):17–24, 2011. 1, 3, 6
[2] Cosma Rohilla Shalizi and James P. Crutchfield. Compu-

tational mechanics: Pattern and prediction, structure and
simplicity. Journal of Statistical Physics, 104(3/4):817–
879, 2001. 1, 3, 6

[3] Gowtham Ramani Kumar, Cheuk Ting Li, and Abbas El
Gamal. Exact common information. In 2014 IEEE In-
ternational Symposium on Information Theory, 2014. 1,
4

[4] Thomas M. Cover and Joy A. Thomas. Elements of In-
formation Theory. Wiley-Blackwell, 2005. 1

mailto:josh.ruebeck@gmail.com

7

Appendix A

Besides the minimal generator project, I also worked on writing python code to calculate two quantum information
quantities: entanglement of formation and accessible information. These problems are related to the generative
complexity problem in that they involve global non-convex optimization. As a brief summary of that work, this
appendix includes the documentation on the three main classes used in that code.

Help on module ensemble:

NAME

ensemble

FILE

/Users/josh/Dropbox/REU stuff/EoF/EoFlib/EoF/ensemble.py

CLASSES

Ensemble

class Ensemble

| Represents a quantum ensemble.

|

| Methods defined here:

|

| EoF_pure(self, rho)

| The entanglement of formation of a pure state is equal to the von

| Neumann entropy of either of the two subsystems.

|

| rho: a density matrix representing a pure state (of the whole system)

|

| __init__(self, dist, inputmode=’ens’, partition_dimension=2)

| dist: the distribution of the ensemble. depending on inputmode,

| this is:

|

| inputmode=’ens’: (probabilities, states)

| probabilities: an array of probabilities

| states: an array of 1D vectors representing quantum states

|

| inputmode=’ensdm’: (probabilities, dms)

| probabilities: an array of probabilities

| dms: an array of density matrices (as numpy arrays)

|

| inputmode=’npdm’: dm (numpy.array)

| dm: the combined density matrix of the whole ensemble.

| ensemble is taken to be eigen-ensemble

|

| inputmode=’qtdm’: dm (QObject)

| dm: a Qutip density matrix (NOT YET IMPLEMENTED)

|

| partition_dimension: the dimension of the first subsystem for

| use in EoF calculation

|

8

| ave_EoF(self)

| This is simply the average of the EoF values for each pure rho.

|

| Given some decomposition of arbitrary state rhoprime = sum_i

| ps_i rhos_i in terms of pure states rhos_i, we can compute

| this average EoF.

|

| Given that the EoF is defined as the minimum over all such

| decompositions, this provides an upper bound.

|

| partial_trace(self, rho)

| Returns $rho^A = r_B(rho)$, where A is the subsystem dictated

| by self.partition_dimension. This one is what Wei Cai used. Checks

| against qt.ptrace([1])

|

| rho: array (rho^{AB})

|

| qt_dm(self)

|

| to_U_ensemble(self, U)

| Changes decomposition to one given by the process described in Ryu.

|

| U : first N columns of a unitary matrix of dimension M >= N,

| (<= N^2)

|

| --

| Static methods defined here:

|

| von_neumann(rho)

| Returns the von Neumann entropy of rho

Help on module eof_optimizer:

NAME

eof_optimizer

FILE

/Users/josh/Dropbox/REU stuff/EoF/EoFlib/EoF/eof_optimizer.py

CLASSES

EoF

class EoF

| An optimizer to find the entanglement of formation of an ensemble, based on

|

| Ryu, S., Cai, W., & Caro, A. (2008).

| Quantum entanglement of formation between qudits.

| Physical Review A, 77(5), 052312.

|

9

| Default behaviour is to use their ’hybrid’ method of conjugate

| gradient + steepest descent, with basinhopping for Hilbert spaces

| of dimension > 4.

|

| Methods defined here:

|

| G(self)

| the gradient G evaluated at the current self.Utilde

|

| Utilde2vec(self, Utilde)

| Utilde: an MxM unitary matrix

|

| returns: a 2*M^2-length vector for use in scipy’s optimize

| functions

|

| __init__(self, ensemble)

| ensemble: an Ensemble object

|

| g(self)

| Returns the steepest descent direction for H evaluated at the

| current self.Utilde

|

| local_optimize_sp_wrap(self, fun, x0, args, mode=’hybrid’,

| step_size_start=1.0, tol=1e-08, iter_limit=1000, **options)

| Wraps the local optimization functions so they can be plugged into

| basinhopping

|

| optimize(self, seed, mode=’hybrid’, tol=1e-08, step_size_start=1.0,

| iter_limit=1000, nhops=10, basinhopping_callback=None)

| seed: an MxM unitary matrix, where M is the number of states in the

| ensemble

|

| mode: ’hybrid,’ ’conjugate_gradient,’ or ’steepest_descent.’

|

| tol: the tolerance for convergence

|

| step_size_start: the initial step size for steepest descent/hybrid

|

| iter_limit: the maximum number of iterations allowed

|

| nhops: how many times basinhopping should run (for N>4)

|

| basinhopping_callback: a callable to be provided to scipy’s

| basinhopping as a callback

|

| vec2Utilde(self, vec)

| vec: a 2*M^2-length vector for use in scipy’s optimize functions

|

| returns: an MxM complex matrix constructed from vec

|

| --

10

| Static methods defined here:

|

| min_of_parabola(x, y)

DATA

DEFAULT_BASINHOPPING_HOPS = 10

DEFAULT_ITER_LIMIT = 1000

DEFAULT_STEP_START = 1.0

DEFAULT_TOL = 1e-08

Help on module ai_optimizer:

NAME

ai_optimizer

FILE

/Users/josh/Dropbox/REU stuff/EoF/EoFlib/EoF/ai_optimizer.py

CLASSES

AccessibleInfo

class AccessibleInfo

| An optimizer to find the accessible information of an ensemble.

|

| Based on

| Rehacek, J.; Englert, B.; Kaszlikowski, D.

| Iterative procedure for computing accessible information

| in quantum communication (2005)

| Phys. Rev. A

| http://dx.doi.org/10.1103/PhysRevA.71.054303

|

| Methods defined here:

|

| __init__(self, ensemble)

| ensemble: an Ensemble object

|

| optimize_steepest_descent(self, seed, tol=1e-08, step_size_start=0.1, iter_limit=1000)

| seed:

| a povm, represented by a K-dimensional list of NxN arrays

|

| tol:

| the tolerance of the convergence criterion

|

| step_size_start:

| should be < 1

|

| iter_limit:

| the limit on the number of iterations of the optimizer

11

DATA

DEFAULT_BASINHOPPING_HOPS = 10

DEFAULT_ITER_LIMIT = 1000

DEFAULT_STEP_START = 0.1

DEFAULT_TOL = 1e-08

stdout = <open file ’<stdout>’, mode ’w’>

	Generation and Prediction of Markov Processes
	Abstract
	Introduction
	Computational mechanics background
	Elements of information theory
	Processes and hidden Markov models

	Generative complexity: the general problem
	Results
	Analytical solution for Binary Markov chains
	Features of generative models

	Discussion & Conclusion
	Acknowledgments
	References
	Appendix A

