
Computer Simulations of a Superuid Vortex with a Non-trivial Boundary

Qianni Jiang
Physics REU at University of California, Davis

(Dated: April 16, 2017)

This paper summarizes the work I did on superuid vortex simulations based on previous results
in Professor Rena Zieve's Group at UC Davis during the summer of 2016. It reports the detailed
process of simulating the motion of a superuid vortex in a non-trivial geometry, which is realized
by incorporating a publicly available Laplace solver into a separate simulation code. The boundary
correction proves to be the possible reason for the vortex's more downward precession near the
transition. In addition, a wiggling signal that shows up near the local minimum of that period is
suspected of being caused by the boundary too.

INTRODUCTION

In 1937, superuid e�ect was found by Pyotr Kapitsa
[1] and John F. Allen, and Don Misener [2] in liquid 4He.
According to the phase diagram of helium-4 FIG. 1, nor-
mal uid (He-I) turns into superuid (He-II) through a
phase transition at a low temperature (e.g. at 2.17K un-
der saturated vapor pressure). In analogy with a super-
conductor, which has no resistance for electrical current,
superuid has no resistance for uid ow. Superuid
is also incompressible and has incredibly high thermal
conductivity [3] as well as its zero viscosity. More in-
triguingly, the vortex in superuid 4He was found to be
quantized by Hall and Vinen in 1956 [4]. Microscopically,
this property could be explained by a generalized Bose E-
instein condensation. A single-particle wavefunction can
thus be used to describe the superuid helium-4 system
[5]

	(r) = A(r)ei�(r) (1)

where � represents the phase of the superuid. The ve-
locity of the superuid is de�ned as
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mHe
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Therefore, the circulation in the superuid, which is given
by a closed loop integral of the velocity, equals zero, if
Stokes' theorem can be applied.
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In other words, superuid is irrotational

FIG. 1. Phase diagram of 4
He

r� v = 0 (4)

unless the region of superuid is not simply connected so
that Stokes' theorem no longer applies. In this case, the
circulation can be an integer times a constant, since the
closed loop integral of r� gives 2�n.
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(5)

In other words, superuid vortices are quantized. The
source of these quantized vortices is called vortex core
or vortex for simplicity, whose existence prevents the
region of superuid being simply connected.

The novel properties of superuids, including zero vis-
cosity, incompressibility and especially quantized vor-
tices, enormously simplify the study of vortices in hy-
drodynamics. In Professor Rena Zieve's Group at the
University of California, Davis, experiments and corre-
sponding computer simulations are conducted to study
the motions and interactions of vortices in superuid 4He

which provide insights into vortex dynamics in normal
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FIG. 2. Schematic of the double-diameter cell. The yellow
line represents a metal wire and the red is a vortex core.

uids, in type II superconductors, as well as the rota-
tional properties of neutron stars. My part of the work
during the summer of 2016 in Professor Zieve's group
was to consider and analyze the contribution of a non-
trivial boundary when simulating the motion of a super-
uid vortex over time by comparing the simulations with
the corresponding experimental results.

TECHNICAL BACKGROUND

Outline of the Experimental Setup

In the experiment, a refrigerator is used to cool down
the 4He in a cell that consists of two di�erent cylinders
connected by a circular truncated cone. As FIG. 2
shows, a thin metal wire (16 �m diameter) runs along
the middle of the cell and provides a low-energy spot
that vortex core prefers to stay at. It is important to
note that the system is not only translationally but
also rotationally asymmetrical since the wire is slightly
o�-center. In some common non-equilibrium cases,
part of the vortex gets excited, decays o� the wire and
stretches to the cell wall. This o�-wire part is called
a free vortex, since it is free to move in the superuid.
The point where a free vortex attaches to the wire is
called the attachment point.

What is more, a magnetic �eld is added perpendicular
to the metal wire that carries an electric current. The
wire vibrates in di�erent modes under the inuences of
the Lorenz force and the velocity �eld generated by the
vortex. By analyzing the vibrating modes, data on the
e�ective circulation, which is proportional to the length

FIG. 3. Experimental data of the heights of the attachment
point

of vortex on the wire (i.e. the height of the attachment
point), can be obtained. Furthermore, the motions of a
free vortex in the superuid can be reasonably inferred:
The free vortex precesses around the o�-center wire.
It moves downward because its energy dissipates at a
certain rate, which is the general slope of the curve in
FIG. 3. In addition, it does not only move down on
average, but also goes up and down periodically, because
the wire is not on-center. The attachment point goes
up because the extra free vortex goes back on the wire
when the free vortex rotates from the far side to the
close side, and vice versa.

Besides inferring the motions of a vortex from vibrat-
ing modes of the wire, computer simulations can help
us gain more insights into how a free vortex moves in
the superuid and con�rm or disprove our experimental
hypotheses.

Boundary Conditions

In analogy to the magnetic �eld, the superuid veloci-
ty �eld also has no divergence and no curl except at the
vortex core. Therefore, the Biot-Savart law can be used
to calculate the velocity generated by the vortex. To use
the Biot-Savart law, the vortex should either connect on
itself to form a loop or stretch to in�nity like currents
do. In our case, we add image vortices, which extend to
in�nity, to the two ends of the vortex in the cell. The
velocity �eld generated by the vortex can be calculated
by the Biot-Savart law, which requires an integral from
one in�nity to the other.

Magnetic Field Superuid Velocity Field
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FIG. 4. Schematic of the calculation method for the local
vortex

As mentioned before, since the container is translation-
ally and rotationally asymmetric, even the velocities
generated by a straight vortex along the wire are not
entirely tangent to the surface. The error of the velocity
caused by not �tting the boundary conditions will be
bigger when there is a free vortex segment. In order to
solve the boundary problem, it is important to note that
the superuid velocity satis�es Laplace's equation, since
it has no curl nor source.

r2~vb = 0 (6)

Set the velocities at the boundary to be the projections
of the velocities generated by the vortex on the normal
vectors of the boundary points.

vx;b = v?x = (x̂ � n̂)vx (7)

vy;b = v?y = (ŷ � n̂)vy (8)

vz;b = v?z = (ẑ � n̂)vz (9)

Technically, as the owchart FIG. 5 shows, we select n-
odes in and on our particular cell, calculate the velocities
on the nodes with Biot-Savart law, project the velocities
at the nodes onto the normal vectors on the boundary,
create a triangle mesh in preparation for the interpola-
tion, and send the nodes, mesh and perpendicular veloc-
ities to dep Solver, which is publicly available software
using linear interpolation and Indirect Formulation of the
Boundary Element Method to solve Laplace's Equation.
Finally, by subtracting the boundary solution from the
velocity generated by the Biot-Savart law, the velocity
�eld satisfying the boundary condition can be obtained.

Simulation of Motion

To simulate the motion of a superuid vortex over
time, Professor Zieve's group wrote a code based on su-

peruid vortex dynamics [6]. To put it simply, when cal-
culating the velocity of a point on the vortex, the Biot-
Savart law no longer converges as the denominator goes
to zero. However, knowing the propagation velocity of a
quantized vortex ring,

_~s(ring) =
�

4�

ẑ

R
ln(

8R

e1=4a0
) (10)

we could draw a ring which passes through the point we
calculate the velocity of and the two points next to it
FIG. 4. By using the Biot-Savart law to integrate the
velocity along the major arc and subtracting the inte-
gral from the velocity of the ring, we can get the local
contribution of the velocity.
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In addition, since the elementary excitation of super-
uid 4He free vortex is strongly scattered by quantized
vortices, there is a frictional force depending on the rel-
ative velocity between the gas of elementary excitations
and the vortex. This frictional force will be exerted on
the uid near the core and will give the free vortex an
additional velocity.

_~sf = �~s
0

� (~vn � _~s0)� �
0

~s
0

� [~s
0

� (~vn � _~s0)] (13)

In conclusion, the velocity of the point on the free vor-
tex is the sum of the local contribution, nonlocal contri-
bution, the velocity driven by frictional force minus the
boundary correction, which is neglected in previous cases
since it has comparably small contributions in a container
with high symmetry.

_~s = _~slocal + _~snonlocal + _~sf � _~sb (14)

As the vortex moves, the velocities of the points on the
vortex change accordingly. Using Runge-Kutta-Fehlberg
method as a time-stepper, the motion of a superuid vor-
tex over time can be simulated.

RESULTS AND DISCUSSION

To test the Laplace solver, I set the initial velocity �eld
to be a constant ow and solved the boundary problem
with the solver. As the bottom view shows in FIG. 6,
there is no circulation nor source in it. At the edge, it
satis�es the boundary conditions. In the transition, the
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FIG. 5. A owchart on how to solve the boundary condition in the particular geometry

FIG. 6. (a) Constant test ow (b) Bottom view of the cell (c) velocity �eld in the transition

FIG. 7. Schematic of the reason for the asymmetric �eld when
uid ows constantly

velocity �eld also nicely satis�es the boundary condition-
s. It is worth noting that there is an asymmetric upward
velocity �eld in one half and a downward in the other half.
Intuitively, when the constant ow hits into the transi-
tion, its perpendicular component will be cancelled out
by solving the boundary problem FIG. 7. Therefore, a
downward velocity �eld is left when the ow hits into the
transition and an upward velocity �eld is left when the
ow ows out of the transition. A similar phenomenon
would happen when there is an o�-center straight vor-
tex in the cell. The uid ows around the vortex core,
and because it is o�-center, it will hit the wall. As FIG.

8 shows, the left arrow hits into the transition, and the
right arrow hits out of the transition. In this case, there
will also be a downward velocity �eld in the one half
and an upward in the other. Essentially, the velocity
�eld inside the cell must not be simply circular since the
o�-center vortex breaks the rotational symmetry of the
system.

Experimentally, we always see a much more downward
procession when the free vortex is near the transition.
However, before involving the boundary correction in,
we cannot see this behavior in our simulation FIG. 9.
With boundary problem solved, which is represented by
the red line, we could see for a period far from the tran-
sition, the boundary correction makes free vortex move
slightly upwards than usual FIG. 10. For a period near
the transition, the free vortex moves much more down-
wards with the boundary correction, which indicates that
the correction from boundary solution might be the rea-
son for the more downward procession near the transi-
tion. In addition, a wiggling signal, which shows up near
the local minimum of the period, also happens in the
experiment. However, judgement on whether these two
wiggling signals show up for the same reason needs more
con�rmation.
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FIG. 8. Schematic of the reason for the asymmetric �eld when there is an o�-cente vortex

FIG. 9. Comparison between experimental data of the height of attachment point (left) and the numerical simulation without
boundary corrections (right)

CONCLUSION AND FUTURE WORK

In conclusion, this paper reports the detailed process
of simulating the motion of a superuid vortex in a non-
trivial geometry, which helps develop further insights into
the corresponding experiment results. The boundary cor-
rection proves to be the possible reason for the vortex's
much more downward precession near the transition. In
addition, a wiggling signal that shows up near the local
minimum of that period is suspected of being caused by
the boundary too.
In the future, the program should be optimized to low-
er the time cost of running it. Optimization methods
include using more e�cient interpolation methods when
solving the Laplace's equation, reducing the input and
output in the cooperation between the simulation code
and the Laplace solver, and trying to �nd feasible meth-
ods from �rst principles to avoid solving Laplace equation
every hundred steps. Once the program is optimized, run
the program with real parameters through an entire pro-
cess, and compare the simulations with the experimental
data to obtain more reliable discoveries and conclusion-

s. In addition, simulations in di�erent geometries can be
tried to further explore the superuid vortex dynamics
in complex conditions.

ACKNOWLEDGEMENTS

I would like to thank my advisor Professor Rena Zieve
for her great supervision and patient guidance. I also
would like to thank the physics department of UC Davis
for providing me an international student this REU re-
search opportunity. Thank all the previous students who
worked on this research. My work is based on theirs.

[1] P. Kapitza, Nature 141, 3558 (1938).
[2] J. F. Allen and A. D. Misener, Nature 142, 3597 (1938).
[3] R. J. Donnelly, Experimental Superuidity (University of

Chicago Press, 1967).
[4] W. F. Vinen, Proc. R. Soc. A 260, 1301 (1961).
[5] L. Donev, Experimental methods and results on the study

of superuid helium.
[6] K. W. Schwarz, Phys. Rev. B 31, 9 (1985).



6

FIG. 10. Simulations with boundary corrections for a period far from the transition (left) and a period near the transition
(right)


