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Abstract

We explore localization due to randomness in both single parti-
cle and many-body systems. Our results show that different forms of
time-dependence of the system cause the system to behave in qual-
itatively different ways. We confirm the known result that random
time dependence causes a disordered system to delocalize completely.
However, we find that periodic time dependence causes an increase in
localization length, but not a complete delocalization.

Introduction

In this paper, the fundamental question we ask is: When considering an
isolated system, where is the use of statistical mechanics justified? In other
words, under what conditions is it possible to calculate properties of a whole
system by averaging over individual states of the system, weighted by the
Boltzmann factor? The Eigenstate Thermalization Hypothesis provides a
partial answer to this question by providing a connection between quantum
mechanics and the predictions of statistical mechanics. The ETH states that
after a sufficiently long time, a system will thermalize, so that the expectation
value of any observable will be equal to the value predicted by statistical me-
chanics. However, the ETH is, in the end, only a hypothesis and sometimes
breaks down. When the ETH breaks down, the system becomes localized,
meaning that properties may vary from one region to the other and, further-
more, that information may not be exchanged between these regions. One
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well-known way to cause the ETH to break down is to introduce randomness
to the system [Ref. 1].

We consider an N -site, one-dimensional lattice with random onsite en-
ergies as shown above. 1 We add both random (“white noise”) time de-
pendence and periodic time dependence to onsite energies to explore where
delocalization occurs. This model considers hardcore bosons, so that each
orbital contains either 0 or 1 particles. (Although much research in solid
state physics concerns fermions, boson models apply to cold atom systems
and translate to systems of magnetic spins.) Our “white noise” model serves
as an extension of the results of Ref. 2.

Methods

We examine both single particle (non-interacting) and many-body (interact-
ing) systems. In each case, we begin with a lattice with N sites. Each site
has an associated energy (“onsite energy”) εi. Tunneling parameter t is the
energy associated with tunneling between two sites. As in the tight binding
model, particles are allowed to tunnel only between neighboring sites. Thus,
the Hamiltonian of the single particle system is given by

H = −t
N∑
i=1

(c+
i ci+1 + c+

i+1ci) +
N∑
i=1

εini (1)

where c and c+ are the annihilation and creation operators, respectively, and
ni = c+

i ci is the number operator. In the many-body system, we must allow
for the possibility of interactions between particles, and so the Hamiltonian
takes on an additional term:

1Note that N must be large enough for statistical mechanics to apply in the first place.
An N -site system with periodic time dependence approximates an infinite system when
the average inverse participation ratio of its eigenstates, defined later, is constant with
respect to N .
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H = −t
N∑
i=1

(c+
i ci+1 + c+

i+1ci) +
N∑
i=1

εini − V
N∑
i=1

nini+1 (2)

We explore systems with random “white noise” time dependence (onsite
energies given by di + cφi, φi ∈ [−1, 1]) and periodic time dependence (onsite
energies given by di + c Cos(2πm

M
+ φi), φi ∈ [0, 2π]). di is a random number

in [−w,w]. In our computations, all random numbers are obtained from
random number generators in Python.

To quantify localization or delocalization for a given eigenstate ψ of the
system, we calculate the participation ratio defined for the single particle
system as

IPR =
1∑
i |ψi|4

(3)

where ψi is the ith entry of the eigenstate. A larger IPR indicates that more
sites in the lattice are “participating,” and the system is more delocalized. An
IPR of 1 indicates that the particle is completely localized to one site. True
delocalization occurs when IPR increases linearly with system size N . We
compare the participation ratios of a given system to that of a corresponding
time independent system, whose onsite energies have c = 0.

In addition to IPR, we calculate thermodynamic quantities (such as en-
tropy and specific heat), the time-evolution of a given initial state, and prop-
erties of the time evolution operator. For the many-body system, we also
calculate density-density correlation functions, structure factor, and entan-
glement entropy of the system employing an approximation scheme called
the Numerical Link Cluster Method.

Because the Hamiltonian itself has time dependence, the calculation of
these quantities becomes more complicated. Any quantum mechanics text-
book describes the time-evolution of eigenstates of a time-independent Hamil-
tonian, but to describe the states of a time-dependent Hamiltonian, we must
employ different methods. For a time-independent Hamiltonian, an eigen-
state at time 0 |ψ0〉 evolves as

|ψ(t)〉 = eiHt |ψ0〉 (4)

(We use units where h̄ = 1.) Feynman generalized this result to find the
eigenstates of a time-dependent Hamiltonian by introducing the time-evolution
operator U :
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U(t, 0) = T e−i
∫ t
0 H(t′)dt′ (5)

where T is the time-ordering operator. Then, each eigenstate evolves as

|ψ(t)〉 = U(t, 0) |ψ(0)〉 . (6)

In our case, we consider a piecewise constant Hamiltonian. We break the
total time period T into M time intervals so that equation (5) becomes

Utot = Te−i[H1+H2+...HM−1+HM ]∆t = UMUM−1...U2U1. (7)

Thus, our calculations require us to find the time evolution operator for each
time segment and then multiply them together to describe the evolution of
the system over the whole time interval.

Results

Varying N

For time-independent systems, inverse participation ratios increase only for
small N and then remain roughly constant, with variation due only to dis-
order and vanishing with averaging over a sufficient number of disorder re-
alizations. The inverse participation ratios of the periodic time-dependent
system increase with increasing N but level off for sufficiently large system
sizes. This behavior indicates that periodic time dependence causes the local-
ization length to increase, but not for the system to become truly delocalized.
In contrast, the 〈IPR〉 white noise system increases linearly with increasing
system size, which indicates that the system is truly delocalized. Also note
that, because the 〈IPR〉 of the periodic system becomes virtually constant
at sufficiently large N , our calculations at these lattice sizes approximate the
behavior of an infinitely long system.

In addition to average IPR, we consider the highest IPR of the system.
For the periodic system we find that even the highest IPR does not show
complete delocalization and behaves qualitatively like the average IPR of
the system.
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(a) Periodic system with w = 2, T =
6, M = 40, averaged over 10 disorder
realizations
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(b) White noise system also with w =
2, T = 6, M = 40, averaged over 10
disorder realizations

Varying w

For both forms of time dependence, larger w has a stronger localizing ef-
fect. IPR decreases for increasing w for both the time-dependent and time-
independent systems. This behavior makes intuitive sense because larger w
means that some orbitals will have stronger potentials, and so the particle
will be more tightly bound or strongly repulsed. For small w, the time-
dependent system has a smaller participation ratio than the corresponding
time-independent system because time dependence adds a nonzero onsite en-
ergy.

Varying c

For both random and periodic time dependence, IPR increases with increas-
ing c up to a point, reaches a peak (called the relocalization point), and then
decreases. For very large c, inverse participation ratios fall below those of
the time independent system.

Relocalization point

We define the relocalization point of a given system as the value of c at which
the IPR begins to decrease. Below, the relocalization point is plotted as a
function of w. We find that the relocalization point increases for increasing
w. The IPR of the relocalization point (also shown below) decreases with
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Figure 2: Periodic system with N = 128, w=1., T = 6, M = 100 averaged
over 10 disorder configurations.
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Figure 3: Relocalization point (a) and 〈IPR〉 at relocalization point (b) for
a periodic system with N = 128, T = 6, M = 40 averaged over 10 disorder
realizations.

increasing w.

Varying T and M

For periodic time dependence, increasing T causes greater delocalization
(IPR increases). Increasing M causes IPR to decrease up to a point. How-
ever, because cosine is a continuous function, once we consider large enough
M , we are essentially approximating the cosine function. Thus, the IPR and
other properties remain the same as M is increased further.

For the white noise system, IPR decreases with increasing M , eventually
falling below the IPR of the corresponding time-independent system. IPR
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increases with increasing T and eventually levels off.

〈x〉 and 〈x2〉

Consider a particle placed on the first site at t=0 (state |ψ0〉). We can
describe the motion of the particle through the lattice by calculating the
quantities 〈x〉 and 〈x2〉 , where x is the displacement of the particle from its
starting point. With the piecewise constant Hamiltonian defined above, the
state of a particle in time sector m is given by

|ψ〉 = Um |ψ0〉 . (8)

|ψ〉 can be written in the basis of real state positions as

|ψ〉 =
∑
i

ci |i〉 . (9)

We define
〈x〉 =

∑
i

|ci|2fi

〈x2〉 =
∑
i

|ci|2f 2
i (10)

where

fi =

{
i− 1 for 1 ≤ i ≤ N

2

−N + i− 1 for N
2

+ 1 ≤ i ≤ N.

Because x measures displacement, 〈x〉 remains nearly zero over the entire
period (once several disorder realizations are averaged). During the first
time segments, the particle’s motion is ballistic: it moves randomly in one
direction or the other away from its starting point at a near-constant velocity.
As shown in Fig. 4 the particle’s squared displacement is roughly parabolic in
the beginning. After a number of time segments, the displacement squared
curve becomes linear. The 〈x2〉 versus m curve flattens after some time
(larger lattices require more time).
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Figure 4: 〈x2〉 for w = 1, T = 6, c = 2, system sizes 111 (yellow) and 251
(blue) averaged over 100 disorder configurations.

Many particle system (Interacting system)

Instead of considering one particle free to move around the lattice, we allow
for the possibility of multiple particles, anywhere between 0 and N. We work
in the grand canonical ensemble, so that for a given calculation the number
of particles in the system is allowed to vary. V is the energy of interactions
between particles on neighboring sites. In our conventions, V < 0 gives a
repulsive potential (since the energy required to sustain this configuration is
increased) and V > 0 gives an attractive potential.

Calculation of IPR

Because there may be more than one particle in the system, we need to
redefine the IPR in order to quantify localization. We first define the single
body density matrix M, whose entries are given by

M = 〈ψ| c+
i cj |ψ〉 . (11)

Diagonalizing the single body density matrix gives eigenstates |n〉 and eigen-
values λn. Writing each eigenstate in its position state basis gives

|n〉 =
∑
i

cni |i〉 . (12)

We then use these coefficients cni to calculate IPR:
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IPR =
1

N

∑
n

λn
∑
i

|cni |4 |i〉 . (13)

We find that the IPR for the many-body system behaves in qualitatively
similar ways to that of the single-body system when interactions are weak.

The Numerical Link Cluster Method

The presence of multiple particles presents the challenge that the size of the
Hamiltonian increases as N2, rather than N . (Intuitively, the dimension of
the Hamiltonian is the same as the number of eigenstates of the system. Fur-
thermore, the total number of eigenstates for our system, which may have
any number of particles in the range [0, N ], is the sum of the number of eigen-
states for a system with 0 particles, 1 particle, 2 particles,..., N particles.)

The Numerical Link Cluster method is a solution to this computational
difficulty. The NLC is a series expansion method for calculating a given
extensive property in a lattice. This method involves partitioning the lattice
into clusters up to size N − 1, calculating the weight of each cluster, and
calculating the property within each cluster. The property for the entire
lattice is the sum of weights of the clusters. The NLC method is described
further in Ref 3. Note, however, that the NLC method only converges in the
many-body localized phase.

The NLC method is much more computationally efficient than direct
diagonalization (which we employed for the single particle system) because
it is only necessary to diagonalize a (N −1)2-dimensional matrix rather than
a N2-dimensional matrix (or, in some cases, an (N

2
+1)2-dimensional matrix)

and, more importantly, it is able to approximate the behavior of an infinite
system at smaller lattice sizes than is possible with direct diagonalization.
We employ this method to calculate correlation functions, structure factors,
entanglement entropies, and other properties of our system.
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Density-density correlation function and structure factor

For the following calculations we consider the ground state of a lattice at half-
filling (N

2
particles). The density-density correlation function and structure

factor provide a means of determining, for a given set of parameters, how
particles tend to configure themselves relative to one another. The correlation
function for two lattice sites i and j is given by

Cij = 〈ψ|ninj |ψ〉 − 〈ψ|ni |ψ〉 〈ψ|nj |ψ〉 . (14)

For a translationally invariant lattice, we reproduce an already known
result: for sufficiently large-magnitude V < 0 (i.e. |V | >> ε), we observe
a charge density wave, where particles tend to fill every other orbital. The
correlation function shows this by alternating between values of -0.5 and 0.5
for consecutive j values. Our results for a translationally invariant model
and for a random, time-independent model are shown in the plot below.
Further work is needed to confirm these results. For V > 0, we find a
phase separation, wherein orbitals on one side of the lattice are occupied and
orbitals on the other side of the lattice are unoccupied.

The structure factor is defined in terms of the density-density correlation
function:

S =
1

N

∑
ij

Cij, V > 0 (15)

S =
1

N

∑
ij

(−1)i+jCij, V < 0. (16)

Again assuming a sufficiently large-magnitude V , a translationally invariant
model has S = 1.

Future work: Entanglement entropies

The entanglement entropy of a system can be used to determine whether
the system is in the many-body localized phase or the thermal phase. In
the thermal phase, entanglement obeys a volume law and in the localized
phase obeys an area law. To calculate entanglement entropy, one must first
determine a “cut” in the system, and perform a Schmidt decomposition of
the system’s eigenstates:

|ψ〉 = CiL,jR |n1ndL ;ndL+1ndL+dR)〉 = CiL,jR |iL; jR〉 (17)
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(a) Translationally invariant, time-
independent system V < 0
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(b) Random, time-independent sys-
tem with V < 0

Then, it is possible to write the reduced density matrix as

ρLiL,i′L =
∑
jR

C∗
iL,jR

Ci′L,jR . (18)

Using the reduced density matrix, we can calculate the entanglement entropy:

S = −Tr (ρ log2ρ) = −
∑

pi log pi. (19)

We have followed the conventions of Ref. 4 and chosen our cut to be the
middle of a 2N − 2 orbital lattice. The next step is to reproduce the results
of Ref. 3 and then possibly to explore other configurations.

Conclusion and further work

Our calculations of participation ratios and other quantities demonstrate the
differing behaviors of the system in the localized phase and in the thermal
phase. We find that the white noise model has a truly delocalized phase,
while the period model does not. Future work includes calculation of the
entanglement for the many-body system. We also hope to explore the time
evolution of non-equilibrium states for this system.

Acknowledgments

This project was completed under the supervision of Prof. Rajiv Singh, and
with the collaboration of Prof. Richard Scalettar and, for the single particle
system, Natasha Proctor.

11



References

1. R. Nandkishore, D. A. Huse. arXiv:1404.0686.

2. D. A. Evensky, R. T. Scalettar, and P. G. Wolynes. J. Phys. Chem.
1990, 94, 1149-1154.

3. M. Rigol, T. Bryant, and R. R. P. Singh. Phys. Rev. Lett 97, 187202
(2006).

4. T. Devakul, R. R. P. Singh. Phys. Rev. Lett. 115, 187201 (2015).

12


