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Abstract:

Motivated by experimental discovery of quantum antiferromagnetism (AF) in quasicrystal
(QC) materials such as Au-Al-Yb compounds [1], we wanted to examine these studies on
quasicrystalline approximates [2, 3]. To differentiate the effects due to the non-periodic
structure and the varying coordination number, we repeated the analysis for two different
structures, a Lieb lattice with periodicity but varying coordination, and the quasicrystal
structure which is not periodic. Studying the spin-spin correlation function around this
phase transition gives an estimate for Vc = 0.9 at β = 20.
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1 Introduction

Variation of the systems parameters facilitates the study of the phase transition between
antiferromagnetism and singlet formation on a lattice. This phenomenon has been exten-
sively studied using determinant Monte Carlo techniques on periodic lattices, such as the
1D, 2D, and 3D square lattices [4]. However, recent experimental results have revealed that
this phenomenon is not confined to periodic lattices, as the quasicrystal material Au-Al-
Yb also revealed antiferromagnetic ordering [1]. Therefore, we were motivated to explain
these experimental results using the Hubbard model [6]. Our collaborators had some ta-
bles detailing the site bonds for QCs on a couple of different sized lattices. Although the
quasicrystalline approximates did display antiferromagnetism, they failed to reproduce an-
other interesting property, non-Fermi liquid behavior [5]. Therefore, one must be cautious
in applying the results from this study since it does not reproduce all of the physics. To
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explain this project, I will start by explaining a bit more about quasicrystals, the experi-
mental material we were attempting to model, and the phenomenon of antiferromagnetism
versus singlet formation. Then I will explain the Periodic Anderson Model Hamiltonian
that encodes the physics, the methods of this analysis, and conclude with our results.

1.1 Quasicrystals

Colloquially, a crystal is considered a periodic structure formed by repeated application
of a unit cell. Many materials in nature do possess this long range periodic order and
we can take the Fourier transform of a periodic lattice and study the reciprocal lat-
tice to more easily gain information about the density of states and allowed energies
of the system. A more inclusive definition of a crystal, can help diversify the physics
that we are able to study using similar techniques. A quasicrystal is a structure that
is ordered, but not periodic as it does not possess a translational symmetry. A pic-
ture of the 2D quasicrystal that I was working with is shown in the figure below [2].

Figure 1: The thick lines show the bonds for
the 41 site lattice while the thin lines show
how the 41 site lattice can be inflated to form
the 239 site lattice [2].

This picture encodes the information for
two 2D lattices, where the bold black lines
show the bonds for a 41 site lattice, and
the skinnier lines show the connections for
a 239 site lattice. Larger structures are
formed not by repeating a unit cell, but
rather by a process known as inflation. In
the figure, you can see that the solid lines
form squares and parallelograms, and the
larger lattice was created by implementing a
smaller structure inside the larger one, sim-
ilar to how fractals are created.

To study the physics of how these
atoms interact with each other, recall that
in quantum mechanics two atoms inter-
act with each other through the overlap
of their wavefunctions, as shown in Fig. 2.
The wavefunction is solved for the hydrogen
atom using separation of variables, where the wavefunction, ψnlm, is written as the product
of the radial and angular terms.

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (1.1)

Rnl(r, θ) is a product of the exponential and Laguerre polynomials and Ylm(θ, φ) are the
spherical harmonics [8]. The radial dependence depends on the principle quantum number,
n, as

Rnl(r) ∝ exp

(
− r

na0

)
(1.2)
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Figure 2: The overlap between atomic wavefunctions characterizes interactions[7]

where a0 is the Bohr radius. As n increases, Rnl increases, so the expectation value of r is
larger for bigger n. This qualitative result carries over to larger Z elements as well. The
valence electrons for Au, Al, and Yb are in 5d, 3p, and 4f orbitals, respectively, so this
implies that the Au atoms have a more dispersed wavefunction than Al or Yb. The 3p and
4f orbitals will both have a negligible range compared with that of the 5d orbital, so we
can generalize by denoting conduction orbitals by as d and the localized orbitals as f . This
notation holds for general quasicrystals as well since most include both a transition metal
and a Lanthanide. Then with this approximation, we have two wavefunctions, ψd and ψf
corresponding to the conduction and localized orbitals, respectively. Then we can define
the energy required to hop between sites using the kinetic energy operator T̂

t =

∫ ∞
−∞

ψ∗dT̂ψddx V =

∫ ∞
−∞

ψ∗dT̂ψfdx 0 =

∫ ∞
−∞

ψ∗f T̂ψfdx (1.3)

where t is the energy to hop between two conduction sites and V is the energy to hop
between a conduction and localized site. Because of the negligible overlap between orbitals
of localized sites, the hopping energy between two f orbitals is zero.

Figure 3: Illustration for how a 1D chain can have a localized site added at each conduction
site, as specified by the Periodic Anderson Model [6]

Modeling a crystal in this way defines the Periodic Anderson Model (PAM) for a lattice.
Figure 3 demonstrates this model if the conduction sites are connected together in a 1D
chain, with a localized site below each of them. In this project, the conduction sites are
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connected according to Fig. 1, and then each of these conduction sites has an associated
localized site. So the “41 site” lattice actually has 82 orbitals, 41 conduction and 41 localized
orbitals, and similarly for the 231 site lattice.

1.2 Antiferromagnetism vs. Singlet Formation

Now that the geometry has been described, we can investigate the physics processes under
consideration.

If the connection between the localized and conduction sites, V , is strong enough, the
conduction and localized orbitals will hybridize. After hybridization, the two electrons are
in the same spatial wave-function, so that the Pauli exclusion principle requires that their
spins must be oppositely aligned. This is analogous to the ground state of the hydrogen
molecule when the two electrons are in the anti-symmetric state, a phenomenon known
as singlet formation. Since the communication between the singlet and antiferromagnetic
states is so strong, the two opposite spins orbitals effectively cancel each other out, allowing
no long range ordering of the spins on the lattice. An analogous classical picture involves
two magnetic dipoles canceling each other’s magnetic fields, shown in Fig. 4a.

In the competing process, if the hopping energy V is not too strong, but comparable
to the hopping energy t, the localized sites on the lattice will also be able to communicate
with each other. An example of how this phenomenon can occur for the 1D PAM picture is
displayed in Fig. 4b. The down spin on the lower right localized site makes it energetically
favorable to have an up spin on the adjacent conducting site. This site then induces a
down spin in the neighboring conduction sites, which induces an up spin on the adjacent
localized sites. The pattern continues throughout the lattice, producing a system with
magnetic ordering, but no net magnetization.

(a) The singlet
phase visualized
with two dipole
magnets.

(b) In the antiferromagnetic phase, the spin on one site induces the
opposite spin in the adjacent sites, visualized here for the 1D chain
PAM model from Fig. 3.

Figure 4: Illustration of the two different “phases” for the electron spins in a crystal.

The system will transition from one of these states to the other through a phase tran-
sition governed by the hopping parameter V , as below some value Vc it becomes more
energetically favorable for the system to become antiferromagnetic. At half-filling, the lat-
tice has, on average, one electron per site. For a lattice to have a stable antiferromagnetic
configuration at half-filling, each site with an up-spin electron needs to be adjacent to a
site with a down spin electron, or bipartite. A bipartite lattice can be divided into two
sublattices A and B where each site in sublattice A is surrounded by sites in sublattice B,
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and vice versa. For example, the square, Lieb (Fig. 6), and hexagonal lattices are bipartite,
while the triangular lattice is not.

Figure 5: Orientation for the sites with the differing coordination numbers in the qua-
sicrystal, ranging from z = 3 to 8, and named “Heisenberg stars” [2]

The quasicrystal lattice not only has no long range order, but also has varying coordi-
nation numbers, or different numbers of nearest neighbor bonds (see Fig. 1). We wanted to
study the formation of antiferromagnetic ordering on the quasicrystal using a determinant
Monte Carlo implementation for the Hubbard Model, something that has never been done
before. To explore the differences for whether discrepancies from other implementations for
the square lattice were due to the non-periodicity, or the differing coordination numbers
(z), we also looked at the phase transition in the Lieb lattice, shown in Fig. 6, a bipartite
structure that is periodic, but has differing coordination numbers (z = 2 and z = 4).

Figure 6: Illustration for the Lieb lattice [6]
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2 Theory

The Hamiltonian incorporates this qualitative picture to describe quantitatively the physics
that we are modeling. The quantities of interest in the Hamiltonian are written in terms of
creation and destruction operators.

2.1 Creation and Destruction Operators

In an introductory quantum mechanics course, Schrodinger’s equation for the simple har-
monic oscillator can be solved in terms of creation and destruction operators, as successively
higher energy states are reached by applying the creation operator to the wavefunction, and
lower energy wavefunctions achieved by applying the destruction operator [8]. The lowest
energy for the system is ground state energy, so applying the destruction operator to the
ground state returned 0.

In a lattice, we use creation and destruction operators to create and destroy electrons
on specified sites. The operator d†jσ creates a conduction electron with spin σ on the site j.
Because of the Pauli exclusion principle, two electrons cannot occupy the same quantum
state, so we cannot have two up-spin electrons on the same site. If you try to create another
electron with the same spin at a site that already has an electron with this spin, you must
get zero, exemplified by the equation below

d†2↑ |vac〉 = |0 ↑ 00 . . .〉 d†2↑ |0 ↑ 00 . . .〉 = 0 (2.1)

where |0 ↑ 00 . . .〉 denotes a lattice that is empty, except for a spin-up electron on site 2,
and |vac〉 is the vacuum state, a completely empty lattice. The destruction operator for
conduction sites, djσ, destroys a conduction electron at site j, or returns 0 if there is no
conduction electron with spin σ on site j already.

d2↑ |0 ↑ 00 . . .〉 = |vac〉 d2↓ |0 ↑ 00 . . .〉 = 0 (2.2)

Similarly, f †jσ and fjσ create and destroy, respectively, spin σ electrons in the localized
orbital at site j. As before, the f denotes the localized orbital while d denotes the conduction
orbital.

We can count the number of localized electrons of spin σ at site j by using the number
operator njfσ = f †jσfjσ. When njfσ operates on a state, it returns the same state, multiplied
by the eigenvalue defined by the number of localized spin σ electrons at site j.

2.2 The Hamiltonian

The Hamiltonian is the sum of the kinetic and potential energies, and Eq. (2.3) encodes
the physics of this model using the creation and destruction operators

H = −t
∑
〈ij〉σ

d†iσdjσ − V
∑
i

(
d†iσfiσ + f †iσdiσ

)
+ Uf

∑
if

(
nif↑ −

1

2

)(
nif↓ −

1

2

)
(2.3)

where
∑
〈ij〉 means sum over all nearest neighbor sites, i and j. From Section 1.1, t is

the hopping energy between two conduction sites and V is the hopping energy between
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a conduction and localized orbital. The first summation destroys the electron of spin σ

at site i, and creates one at site j, and since i and j are neighboring sites, this shows an
electron hopping between conduction sites. Similarly, the second summation has a term
which destroys a localized electron at site i, and then creates one at the conduction site i,
and another term that destroys a conduction electron at site i, and then creates one at the
localized site i, characterizing an electron hopping between a localized and conduction site
with hopping energy V . So the first two summations account for the kinetic energy.

The last summation places a potential Uf at the localized orbitals to induce local
magnetic moments. There are four possible configurations that electrons can occupy a
single site in, shown in Fig. 7. The factors of 1

2 in the terms
(
nif↑ −

1
2

)
and

(
nif↓ −

1
2

)
allow the potential energies for the configurations to be centered about zero, which we are
free to do because potentials can only be defined up to an arbitrary constant. A system
tends to the state of lowest potential energy, so the configurations with energy −Uf/4 with
only one electron at the site will be favored by including this term.

Figure 7: The potential induced on a localized site to induce local moments. The blue
arrow denotes a spin up electron, while the red arrow denotes a spin down electron.

3 Methods

With this geometry and the Hamiltonian, I could then study the physics using a deter-
minant quantum Monte Carlo framework called QUEST (QUantum Electron Simulation
Toolbox) [9]. The sites on the lattice were numbered according tables detailing which sites
were bonded to each other. I plotted the two separate crystals in Fig. 8a and Fig. 8b, to
disentangle the two lattices in Fig. 1. Then I used Cartesian coordinates to produce these
plots in the geometry file for QUEST. To show the bipartiteness of the lattice, the two
different sublattices composing each quasicrystal in Fig. 8 are shown with blue and green
colors. The nearest neighbor tables were connected with periodic boundary conditions,
but these periodic boundary conditions produced a lattice that was not bipartite anymore,
as can be seen in Fig. 8 because the border atoms are all the same color. Normally pe-
riodic boundary conditions are used so that the smaller lattices can more easily replicate
the macroscopic properties of a system. However, a non–bipartite lattice destroys the AF
ordering that we were trying to study, so open boundary conditions were used to preserved
the bipartiteness necessary for antiferromagnetic ordering. This means that there are some
sites with z = 1 and z = 2, even though the PBC lattice had 3 ≤ z ≤ 8.
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Student Version of MATLAB

(a) 41 site quasicrystal

Student Version of MATLAB

(b) 239 site quasicrystal

Figure 8: Illustration of how the quasicrystals lattices are bipartite

With the nearest neighbor tables, I formed matrices denoting the hoppings for 41 and
239 site quasicrystals, with dimensions 82×82, and 578×578, respectively. The eigenvalues
of these matrices are easily found in Matlab, and these values can be binned into a histogram
and divided by a normalization factor to generate the density of states plot, shown in Fig. 9.
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(a) 41 site quasicrystal: 82 eigenvalues binned
in 25 bins
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(b) 239 site quasicrystal: 478 eigenvalues
binned in 100 bins

Figure 9: Density of States for the quasicrystal lattices, with Uf = 0

In the Hamiltonian, there are several different parameters that can be varied, t, V ,
Uf , and the temperature T , and this study focused on the phase transition varying only
V and T , keeping t and Uf fixed at t = 1 and Uf = 4. The goal was to find Vc for the
phase transition between the singlet formation and antiferromagnetic states. For this to
happen, the temperature T needs to be low enough, because colder systems tend to more
ordered states, according to the third law of thermodynamics. Another way we also write
the temperature is β = 1

T , in a unit system where Boltzmann’s constant, kB is 1, so absolute
zero corresponds to β =∞.
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Finally, to contrast deviations in the quasicrystal from the square lattice, Prof. Scalet-
tar ran QUEST for the Lieb lattice to compare whether a QC deviation was due to the
differing coordination numbers, or the lack of periodicity.

4 Results

4.1 Quasicrystal Lattice

QUEST returns the spin-spin correlations between each of the sites, where

cff (i, r) =
〈
f †(i+r)↓f(i+r)↑f

†
i↑fi↓

〉
cdd(i, r) =

〈
d†(i+r)↓d(i+r)↑d

†
i↑di↓

〉
(4.1)

cfd(i, r) =
〈
f †(i+r)↓f(i+r)↑d

†
i↑di↓

〉
.

The singlet correlation measures the correlation between each adjacent and localized
orbital, so is defined as cfd(i, r = 0). Running QUEST returns a measure strength of the
bond between each of the sites. So cfd(i, 0) = −1 means the d,f orbitals at site i always
have opposite spins, cfd(i, 0) = 1 means they always have the same spins, and cfd(i, 0) = 0

if they are randomly oriented, equally likely to have the same or opposite spins. For the 41
site lattice, there are 41 different singlet correlations that we could look at. To investigate
how the singlet correlation changed as a function of z, czff measures the average of the
cff (i, 0) for sites with the same z.

In Fig. 10, qualitatively, we can see the 41 and 239 site lattice both demonstrate similar
trends. Smaller z values tend to be more strongly correlated, which makes sense because
fewer neighbors means there is less competition with the conduction sites. As V → 0,
czfd(0)→ 0 because V is a measure of the overlap between the f and d orbitals, and if there
is no overlap between the wavefunctions, the spins between these orbitals would not depend
on each other. The z = 8 curve was omitted because we are plagued by low statistics at
this point since there is only one site with this coordination number on the 41 site lattice.
This graph also can also motivate a guess for VC since this is V where the slope of the
tangent line is the steepest. By taking the average of the slopes of the tangent lines for the
curves 2 ≤ z ≤ 7 for the 41 site lattice, the phase transition appears to be around V = 0.8.
So we expect the quasicrystal at β = 20 to be in the singlet state when V > 0.9.
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Figure 10: Singlet correlation, czfd(r = 0), β = 20

Figure 11: Illustration of how a hop is de-
fined between localized orbitals on the lattice.

To measure the correlation between the
localized orbitals, use Sff defined as

Sff =
1

Nz

∑
i

czff (i, r)(−1)r (4.2)

which takes the average over all of the spin-
spin correlations with coordination number
z. Nz is the number of conduction sites
that have coordination number z, so 1

Nz
is

the normalization factor so that Sff = 1

if the antiferromagetic ordering is perfect.
Also, (−1)r is the phase factor, where r is
the number of hops, defined according to
Fig. 11.

The structure factor can also be defined as a measure of the AF ordering of the lattice
independent of the coordination number z for the individual sites,
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Sff =
1

N

∑
i

czff (i, r)(−1)r (4.3)

where N is the number of sites on the lattice.

0 0.5 1 1.5 2
V

0

0.05

0.1

0.15

S ff

N = 239, β = 5
N = 239, β = 10
N = 239, β = 15
N = 239, β = 20
N = 41,   β = 15
N = 41,   β = 20
N = 41,   β = 25
N = 41,   β = 30

Figure 12: Sff for the 41 and 239 site quasicrystals

In Fig. 12, the Sff for the 41 and 239 site lattice is shown for a collection of β values.
The 41 site crystal can be evaluated at larger β’s because smaller lattices are less compu-
tationally intensive to calculate lower temperatures. Sff is small for small V because less
overlap between the f and d orbitals implies less “communication” between the d and f

orbitals, since any electron hop between two distinct localized orbitals must first hop with
an energy V to the conduction orbital, and then hop with an energy V back down to the
next localized orbital. The lattice is in the ground state for large V because the curves
lie directly on top of each other and the results are temperature independent. The curves
appear to be peaking around VC = 0.8, consistent with analysis from Fig. 10. The Sff
factors do not lie on top of each other, so this means that these two lattices are not large
enough to replicate the macroscopic properties of the system. To test if the 239 site QC is
large enough, we would need to see a larger lattice give Sff values that lie on top of the 239
site curve. However, because these lattices are grown by inflation, the next sized lattice is
1339 sites [3], quite computationally expensive.
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In Fig. 10 and Fig. 12 we can arrive at an approximate measure for VC by noticing
aspects of the curve, but to rigorously show whether we are in the antiferromagnetic or the
singlet state, we need to plot the hopping energy as a function of the number of hops, r.
Let szff (r) be the average of the spin-spin correlation factors between a localized site whose
associated conduction site has z, nearest neighbors, and another localized site r hops away.
There are three possibilities for the patterning of spins in the lattice depending if we are
above, at, or below the critical temperature, TC . If T > Tc, szff (r) = exp

(
−r
ξ

)
and the

crystal only has short range order, where ξ is a measure of how many hops the spin on one
site can influence the spin on another. If T = TC , szff (r) = r−p, where p is some integer,
and we are right at the phase transition. Finally, if T < TC , sff (r) = constant, and the
crystal has a long range order. To have long range ordering on a finite sized lattice means
that ξ is greater than or equal to the characteristic length for the lattice.

Figure 13: Singlet phase for 41 site lattice, V = 1.0

Consider V = 1.0, greater than VC = 0.9, so we would expect this curve to be in the
singlet phase and have short range order. In Fig. 14, the structure factors as a function
of the hops are shown, but separated according to z. The curves form a zig-zag pattern,
negative when the number of hops is odd, and positive when the number of hops is even,
which makes sense for antiferromagnetic ordering at half-filling. The magnitude of the
correlation is the largest for the smallest number of hops.

A phase factor (−1)hops can be included to just plot the magnitude of the structure fac-
tors, shown in Fig. 13. The curves in this subfigure appear decay exponentially, consistent
with our supposition that we are in the singlet phase.

To verify this hypothesis, the ln
(
szff (−1)hops

)
versus the hops is plotted in Fig. 15.
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Figure 14: Singlet phase for 41 site lattice, V = 1.0

Figure 15: Singlet phase for 41 site lattice, V = 1.0

These plots are approximately linear, which is especially obvious in the z = 6 and z = 7

cases. The slopes of these curves were calculated using a least squares fit, tabulated below.
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z Slope (a)
1 -0.613
2 -0.460
3 -0.593
4 -0.346
5 -0.672
6 -0.443
7 -0.537
8 -0.006

The slopes do not appear to follow a simple trend as a function of ξ, so to estimate ξ,
just take the average of all these slopes 〈a〉 = −0.459, and then ξ = − 1

〈a〉 = 2.18. Since
ξ = 2.18 <

√
41 ≈ 6.4, V = 1.0 has the lattice in the singlet phase with short range order.

The linearity of the ln
(
szff (r)(−1)r

)
is even more dramatic for the 239 site quasicrystal,

because with the greater number of sites, there are more available hops available. In Fig. 16,
the ln

(
szff (r)(−1)r

)
is plotted as a function of the number of hops for the different z, where

the same parameters from Fig. 15 were used, β = 20 and V = 1.0.
A least squares fit was used to find the slopes of the lines in Fig. 16, tabulated in the

table below.

z Slope (a)
1 -0.513
2 -0.491
3 -0.481
4 -0.492
5 -0.505
6 -0.475
7 -0.543
8 -0.485

Again, the slopes do not depend on z, so the average 〈a〉 = −0.498 summarizes the data
from the table, and the number of hops by which one electron can influence another is
ξ = − 1

〈a〉 = 2.01, comparable to ξ = 2.18 from the 41 site case.
To compare the long range versus the short range order of the crystal, look at the z = 2

and z = 4 representative sites with V = 0.8 (in red) and V = 1.4 (in blue) shown in Fig. 17.
While the blue square curves go to zero rapidly, the red dots continue the non-zero zig-zag
pattern out to the distances allowed by the lattice, illustrating that V = 0.8 yields a long
range order. The z = 2, 4 plots were shown since these correspond to the same coordination
numbers from the Lieb lattice.
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Figure 16: Singlet phase for 239 site lattice, V = 1.0
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Figure 17: Comparison of the singlet vs. antiferromagnetic states as a function of V , at
β = 30 for the 41 site lattice.

4.2 Lieb lattice

One of the advantages of the Lieb lattice is that since it is periodic, DQMC is not our only
resort, since the density of states and energy band diagrams can be calculated by hand
using the six site unit cell. The linear algebra showing the steps for the calculating the
allowed energies formula is given in Section 7.3.

Then in [10], the singlet correlator, Sff , and zig-zag plots for the Lieb lattice are shown.

5 Conclusions and Future Steps

Though this study, the phase transition for the quasicrystalline approximates was found to
be VC = 0.9. In the singlet phase (V = 1.0), the average number of hops from which one
site can influence another is ξ ≈ 2, and running just below at V = 0.8 showed long range
order in the lattice. Future steps for this project might be to recreate the geometry files
using a different site as the “center atoms” since it was arbitrary where periodic boundary
conditions were. It would be interesting to see if the physics is preserved, or if averaging
over several different geometry files could produce a more accurate answer. And of course,
the program can also simply be run longer with different random number seeds to avoid
getting “stuck,” which could result in some unreasonable cff (r) values.
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Figure 18: Figures for the PAM Lieb lattice
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7 Appendix

7.1 Additional Figures from the Quasicrystal Analysis

7.1.1 Limiting Cases Check

After encoding the geometry file, I tested a couple of limiting cases as a sanity check,
shown in Fig. 19. These cases considered the self–correlation at the first conduction site,
XXSpin(0, 0) and the adjacent conduction site XXSpin(41, 41). Because the bonds between
the conduction sites are severed, we would get the same answer for any pair of adjacent f ,d
orbitals, and this limiting case will yield the same result for any lattice configuration. First
the hopping energy V between the orbitals was tuned down to zero so that all we have is
two isolated atoms, where only one has a local potential. The conduction site at (0,0) is flat
at 0.5 as the temperature is varied, which means the spin at this site has equal probability
of being up or down for any temperature. The site with a local magnetic moment at (0,0)
goes to 1 as T → 0, but becomes randomly oriented as the temperature is increased.

The next case in this figure has V = 0.8, i.e, the two site Hubbard model. At high
temperature the localized and conduction site still tend to random orientations, but as
the temperature is decreased, the hopping energy V between the conduction and valence
orbitals allow the site with the potential to induce a magnetic moment on the other site.
This causes the self–correlation for the localized site to fall off instead of going to 1 as before,
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Figure 19: Limiting cases for the two-site Hubbard model with t = 0.

but this is similar to the process that occurs on the larger lattice as the lattice transitions
to the antiferromagnetic state.

7.1.2 Comparison of Structure Factors

In Section 4, I just showed data for Sff for the localized sites, but other structure factors
characterizing the overlap of the dd and df orbitals as well, given by the equations below.

Sdd =
1

N

∑
i

czdd(i, r)(−1)r (7.1)

Sdf =
1

N

∑
i

czdf (i, r)(−1)r (7.2)

where (−1)r is the phase factor and 1
N is the normalization constant so that Sdd and Sdf are

1 when the crystal has perfect antiferromagnetic order, and zero is the spins are completely
randomly aligned. We could use any one of these three structure factors to characterize the
AF ordering on the lattice, and Fig. 20 shows all three of these structure factors for the 41
and 239 site quasicrystals. Of the three structure factors Sff , Sdd, and Sdf the points on
Sff curve has the largest magnitude for each of the lattices, making it easier to see ordering
of the lattice using this structure factor, which was why it was used in Section 4. It makes
sense that Sff should be the largest, because the potential well Uf was placed so that the
moment formation starts at the localized sites.
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Figure 20: Structure Factors compared at β = 20.

7.1.3 Coordination Number Dependence

Then in Fig. 21a, the z dependence of the structure factor Sff is shown as a function of V .
For low V the errors are quite large, and is does not appear to be any ordering with respect
to z values. However in the singlet phase, with the larger V values, the magnitude of the
structure factor increases as the coordination number z increases.
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(b) Zooming in on the singlet phase

Figure 21: Szff in the 239 site lattice at β = 15
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7.2 Jackknife Errors

Some of the results for the DQMC runs had physically unreasonable values with cff larger
than 1. Sometimes these were still close, like 1.34, 1.01, or 1.5, and we weren’t worried
about these values because since the computer only has finite precision, sometimes it will
round up too much, but if it rounds down the same number of times, the average will
be what it should be. However, there were sometimes a few values that were orders of
magnitude too large, resulting in huge error bars.

As an example, consider a data set of spin correlations with approximately 40000 val-
ues with values around 0.1 and 10 values of 10. However, including these few 10s ludicrous
values hardly affected the average which is 0.102, as it would have been 0.1 if the un-
physical values were not included. This 2% hardly makes any difference, so we’d rather
preserve the integrity of our scientific investigation that randomly throw out these extra-
neous values. Normally to find the error on a sample, we use the standard deviation from

the Gaussian distribution, defined as σgaussian =

√
(
N∑
i=1

(xi − µ))/(N − 1), where we have

N measurements of x (denoted xi) and µ is the mean of the sample.

With the 10 xi = 10 values included, σ =
√

10∗9.9
40010 = 0.05, an error 5 times as large

as the vast majority of our measurements! This is because the Gaussian distribution is a
smooth distribution with peaked outliers not very common. A method that can calculate
the error while mitigating the effect of the errors is the jack knife method, so named because
it was deemed as handy as the ubiquitous swiss army knife [11].

The Jack-Knife error is calculated in three steps:

1. Find the average µ of the sample.

2. For each xi in the sample, calculate the sample average without the element xi,

Ji =
1

N − 1

∑
j 6=i

xj .

3. Then

σJK =

√√√√N − 1

N

N∑
i=1

(Ji − µ)2 (7.3)

Because of some outliers in the data-set, the error bars in this study were calculated us-
ing the jack-knife method. For normally distributed data, the jack-knife standard deviation
returns the same result as the normal standard deviation, but for a sample with far-flung
outliers, the jack-knife method provides a standard deviation closer to our intuition [11].

7.3 Density of States Calculation for the Lieb Lattice

The unit cell for the Lieb lattice has six orbitals, three conduction and three localized
orbitals, as shown in Fig. 22. Once the geometry is specified, the Hamiltonian matrix for
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Figure 22: Lieb lattice with the numbers for the sites on the repeating unit cell. The circles
represent the conduction orbitals with the solid black lines showing the nearest neighbor
bonds, while the squares denote the localized orbitals. The blue circles denote the z = 2

sites, while the red circles denote the z = 4 sites., and the localized site is outlined in the
same color as the adjacent conduction site to guide the eye. There are six sites in a unit
cell for the adjacent Lieb lattice, and each site is numbered with a number 1 – 6, and the
pattern continues as unit cells extend to build up a larger lattice.

the system can be written down. To simplify the algebra, first solve the Hubbard model
Hamiltonian with localized sites so that the unit cell consists of only 3 orbitals.

Ĥ =

 0 −t
(
1 + eikx

)
−t
(
1 + eiky

)
−t
(
1 + e−ikx

)
0 0

−t
(
1 + e−iky

)
0 0

 (7.4)

The allowed energies of the system are the eigenvalues of Ĥ, and since Ĥ is a 3 × 3

matrix, there will be three eigenvalues. To find the eigenvalues, we need to solve the
characteristic equation,

∣∣∣Ĥ − λÎ∣∣∣ = 0.

∣∣∣∣∣∣∣
−λ −t

(
1 + eikx

)
−t
(
1 + eiky

)
−t
(
1 + e−ikx

)
−λ 0

−t
(
1 + e−iky

)
0 −λ

∣∣∣∣∣∣∣ = 0
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=⇒ −λ3 + λt2
(

1 + eikx
)(

1 + e−ikx
)

+ λt2
(

1 + eiky
)(

1 + e−iky
)

= 0

=⇒ −λ
{
λ2 − t2

[(
2 + eikx + e−ikx

)
+
(

2 + eiky + e−iky
)]}

= 0

=⇒ −λ
{
λ2 − t2 [4 + 2 cos kx + 2 cos ky]

}
= 0

=⇒ −λ
(
λ+ t

√
4 + 2 (cos kx + cos ky)

)(
λ− t

√
4 + 2 (cos kx + cos ky)

)
= 0

∴ λ = 0, ±t
√

4 + 2 (cos kx + cos ky) (7.5)

The eigenvalue λ = 0 corresponds to a flat bland since energy is independent of the kx
and ky chosen. Since in the λ formula, kx and ky are both inside of a cosine, we will be
able to calculate all of the allowed energies if we sweep kx and ky uniformly between 0 and
π. The DOS plot for this simpler 3–site lattice is shown in Fig. 23. The spike at E = 0

matches the flat band at λ = 0.

Figure 23: Density of States for the Lieb lattice with the three site unit cell.
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Now consider the extension by adding the localized sites to get the PAM, with Hamil-
tonian

ĤPAM =



0 −t
(
1 + eikx

)
−t
(
1 + eiky

)
V 0 0

−t
(
1 + e−ikx

)
0 0 0 V 0

−t
(
1 + e−iky

)
0 0 0 0 V

V 0 0 0 0 0

0 V 0 0 0 0

0 0 V 0 0 0


(7.6)

where the upper right corner of ĤPAM is the matrix Ĥ. Now that ĤPAM is a 6× 6 matrix,
there will be six eigenvalues found by solving

∣∣∣ĤPAM − λÎ
∣∣∣ = 0.

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ −t
(
1 + eikx

)
−t
(
1 + eiky

)
V 0 0

−t
(
1 + e−ikx

)
−λ 0 0 V 0

−t
(
1 + e−iky

)
0 −λ 0 0 V

V 0 0 −λ 0 0

0 V 0 0 −λ 0

0 0 V 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

=⇒ −V

∣∣∣∣∣∣∣∣∣∣∣

−λ −t
(
1 + eikx

)
−t
(
1 + eiky

)
V 0

−t
(
1 + e−ikx

)
−λ 0 0 V

V 0 0 −λ 0

0 V 0 0 −λ
0 0 V 0 0

∣∣∣∣∣∣∣∣∣∣∣
−λ

∣∣∣∣∣∣∣∣∣∣∣∣

V 0(
Ĥ − λÎ

)
0 V

0 0

V 0 0 −λ 0

0 V 0 0 −λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

=⇒ −V 2

∣∣∣∣∣∣∣∣∣
−λ −t

(
1 + eikx

)
V 0

−t
(
1 + e−ikx

)
−λ 0 V

V 0 −λ 0

0 V 0 −λ

∣∣∣∣∣∣∣∣∣+ λV

∣∣∣∣∣∣∣∣∣
−λ −t

(
1 + eikx

)
−t
(
1 + eiky

)
V

−t
(
1 + e−ikx

)
−λ 0 0

V 0 0 −λ
0 V 0 0

∣∣∣∣∣∣∣∣∣
+ λ2

∣∣∣∣∣∣∣∣∣∣
V(

Ĥ − λÎ
)

0

0

V 0 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0

=⇒ −V 3

∣∣∣∣∣∣∣
−λ −t

(
1 + eikx

)
V

V 0 −λ
0 V 0

∣∣∣∣∣∣∣+ λV 2

∣∣∣∣∣∣∣
−λ −t

(
1 + eikx

)
V

−t
(
1 + e−ikx

)
−λ 0

V 0 −λ

∣∣∣∣∣∣∣
+ λV 2

∣∣∣∣∣∣∣
−λ −t

(
1 + eiky

)
V

−t
(
1 + e−ikx

)
0 0

V 0 −λ

∣∣∣∣∣∣∣− λ2V
∣∣∣∣∣∣∣
−t
(
1 + e−ikx

)
−λ 0

−t
(
1 + e−iky

)
0 −λ

V 0 0

∣∣∣∣∣∣∣− λ3|
(
Ĥ − λÎ

)
| = 0
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=⇒ V 4

∣∣∣∣∣−λ V

V −λ

∣∣∣∣∣λV 2

(
λV 2 − λ

∣∣∣∣∣ −λ −t
(
1 + eikx

)
−t
(
1 + e−ikx

)
−λ

∣∣∣∣∣+ λV 2 − λ

∣∣∣∣∣ −λ −t
(
1 + eiky

)
−t
(
1 + e−ikx

)
0

∣∣∣∣∣
)

− λ4V 2 − λ3
∣∣∣(Ĥ − λÎ)∣∣∣ = 0

=⇒ V 4(λ2 − V 2) + λ2V 4 − λ2V 2
[
λ2 − t2(2 + 2 cos kx)

]
+ λ2V 4 − λ2V 2[λ2 − t2(2 + 2 cos ky)]

−λ4V 2 + λ4
{
λ2 − t2[4 + 2 cos kx + 2 cos ky]

}
= 0

=⇒ V 4(λ2 − V 2) + 2λ2V 4 − 2λ4V 2 − 2λ2V 2t2 (2 + cos kx + cos ky)

−λ4V 2 + λ4
[
λ2 − t2 (4 + 2 cos kx + 2 cos ky)

]
= 0

=⇒ V 4(λ2 − V 2)− V 2
{
λ4 − 2λ2

[
t2 (2 + cos kx + cos ky) + V 2

]}
+λ2

{
λ4 − 2λ2

[
t2 (2 + cos kx + cos ky) + V 2

]}
= 0

=⇒
(
λ2 − V 2

) {
λ4 − 2λ2

[
t2 (2 + cos kx + cos ky) + V 2

]
+ V 4

}
= 0

The first two eigenvalues are λ = ±V , and to find the last four eigenvalues, use the
quadratic formula to solve for λ2.

λ4 − 2λ2
[
t2 (2 + cos kx + cos ky) + V 2

]
+ V 4 = 0

∴ λ2 =
[
t2 (2 + cos kx + cos ky) + V 2

]
±
√

[t2 (2 + cos kx + cos ky) + V 2]2 − V 4

=
[
t2 (2 + cos kx + cos ky) + V 2

]
±
√
t4 (2 + cos kx + cos ky)

2 + 2t2V 2 (2 + cos kx + cos ky)

(7.7)
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Figure 24: Triange traversed in k–space to
draw the energy band diagram.

In the limit V → 0, Eq. (7.7) reduces
to Eq. (7.5), which makes sense becuase
when V = 0, there is no connection be-
tween the conduction and localized orbitals
and all that is left is the lattice with only
conduction sites. To find the density of
states (DOS) loop over the allowed kx and
ky for the system, calculate the energies,
and then create a binned histogram, shown
in Fig. 18a.

Finally, from this ground work, we can
also plot the energy bands for the sys-
tem. The plot is divided into three (kx, ky)
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points. Γ corresponds to (0,0), M is (π, 0),
amd X is (π, π), and the six curves show how each of the eigenvalues evolves as you traverse
the triangle through these points in k–space, illustrated in Fig. 24. Figure 18b has two flat
bands at ±V , because these are the only two eigenvalues that are independent of kx and
ky.
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