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ε-machines serve as provably minimal classical models of stochastic processes, but they are often
not ideal in that their statistical complexity (Cµ) is demonstrably greater than the excess entropy
(E). Quantum models of the same processes are more efficient as their statistical complexity (Cq)
obeys the relation Cµ ≥ Cq ≥ E. In this report we explore the information theoretic properties
of these q-machines, particularly the value for Cq when considering words of increasing length and
reverse processes, as well as the state trace entropy, the quantum analog of the classical block
state entropy. We also develop a construction of a quantum bi-directional machine and discuss
efforts to calculate the entanglement within q-machines to see if it is the mechanism for information
compression in q-machines.
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INTRODUCTION

Stochastic processes are physical systems for which
there is inherent uncertainty in the output of the sys-
tem, even given a perfect knowledge of initial conditions.
Common examples include the fluctuations of the stock
market, orientations of layers of atoms in crystal stacking,
measurements of quantum spin-systems and sequences of
neural firing. In the case where the process can be repre-
sented with a finite set of states and discrete transitions
in time or space, the formalism of computational me-
chanics is able to represent the structure of the system
through ε-machines [1]. An ε-machine serves as a mini-
mal model capable of reproducing the physical process.
It can be visualized as a set of finite states (A,B,C...)

with transitions between them. Each transition is as-
sociated with a certain probability and an output sym-
bol (0,1,2...). By transitioning through the machine
and combining successive symbols one can form output
strings with associated probabilities. An ε-machine rep-
resenting the Even Process can be seen in Figure 1. The
topology of the ε-machine completely determines the pos-
sible strings and associated probabilities it produces. For
example, the Even Process will always generate ones in
pairs and never singly. Though ε-machines are provably
minimal, for many processes their statistical complexity
(which can be thought of as the ’memory’ of the machine)
is greater than the excess entropy, E (the amount of infor-
mation it is possible to predict about the future). Thus
these classical models store information that is ’wasted.’

FIG. 1: The Even Process

A recent construction of quantum automata, intro-
duced in [2], presents a more efficient method of mod-
eling stochastic processes. The statistical complexity of
these q-machines is generally less than that of their clas-
sical counterparts. However their information theoretic
properties are not well-studied. In the following, we ex-
amine these machines and draw links between the clas-
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sical and quantum representations of processes. We look
specifically at the statistical complexity when consider-
ing different length words and the state-trace entropy,
which has a comprehensible explanation in terms of clas-
sical states and transitions. Finally we discuss ideas on
the calculation and role of entanglement in q-machines,
especially as a candidate for the q-machine’s ability to
compress classical information.

ε-MACHINES AND Q-MACHINES

Classical ε-machines Construction

An ε-machine M can be described mathematically
using a set of causal states, σk ∈ S, symbols s ∈ A and a
set of transition probabilities T sij between states σi and
σj , emitting a symbol s. The way this machine generates
strings is governed by the transition probabilities so that
for a machine transitioning as σA → σB → σC with tran-
sition probabilities T 0

AB and T 1
BC , the word ’01’ is gen-

erated. One important property of ε-machines is unifi-
larity, which says that state transitions are completely
determined by the starting state and the output symbol.
Thus a state cannot transition to two other states on the
same symbol. This ensures that if an observer knows the
causal state at one time, they are synchronized with the
machine and will know the causal state at any later time
if they keep track of the intervening output. Thus they
have maximal predictive power.

Classical Information Measures

Certain information theoretic quantities can be cal-
culated for a process directly from its corresponding ε-
machine. These then give insight into the order, struc-
ture and predictability of the process. One such measure,
known as the excess entropy E, characterizes the amount
of information about the future that can be predicted by
knowing the entire past:

E = I[X−∞:0 : X0:∞] (1)

where I[X,Y] is the Shannon mutual information between
variables X and Y, which corresponds to the degree to
which measurements of the two are correlated. This
quantity can be calculated using the ε-machine with

E = I[S+ : S−] (2)

where S+ are the forward causal states and S− are the
reverse causal states.

A process’ cryptic order, k, can also be easily calcu-
lated given an ε-machine using the equation:

k = min(L : H[SL|
−→
X 0:∞]) (3)

where SL is the set of the past L causal states and
−→
X 0:∞

is the entire future string. For example k = 1 for the
Golden Mean Process in 2 because, even with the entire
future string, it isn’t clear whether the process started
in state A or B if the first symbol is a 1. After the first
state is given, the one can find the causal state at any
other time.

FIG. 2: The Golden Mean Process

Another quantity of particular interest for ε-
machines is the statistical complexity Cµ:

Cµ = H(Π) (4)

where H(X) = −
∑
i pi log pi is the Shannon entropy for

a probability distribution and Π is the stationary state
distribution, defined as the probability that the machine
will be each causal state in S when stopped after running
for an infinite amount of time. Cµ is understood as the
amount of information stored within a machine’s causal
states or, alternatively, the amount of information neces-
sary to synchronize two machines for the same process.

q-machine Construction

For a given causal state, σj , the states of the q-
machine are constructed in [2] from the classical ε-
machine in this fashion:

|ηj(L)〉 =
∑

wL∈|A|L

∑
σk∈S

√
Pr(wL, σk|σj) |wL〉 |σk〉 (5)

Each state of the q-machine is bipartite because it con-
sists of states of the Hilbert subspace of words of length L,
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FIG. 3: The Phase Slip Backtrack Process

|wL〉, and the Hilbert subspace of classical causal states
|σk〉. Notably for L = 0 we recover the ε-machine and
classical state transitions, in which case the state ignores
the word subspace and thus is not bipartite. Thus the
q-machine is a generalization of the classical ε-machine
which includes consideration of the words the machine
produces.For a given L we can construct a state opera-
tor or density matrix to fully characterize the q-machine
state with

ρ(L) =
∑
j

|ηj〉 〈ηj | (6)

This quantum representation of a stochastic process
opens the door to new methods of analysis based upon
studies of bipartite quantum systems and non-classical
correlations. There is a degree of overlap in quantum
states that does not exist in classical ε-machines due to
their discrete set of states. In the classical case two states
with identical transitions of nearly the same probabilities
will contribute separately to the statistical complexity
even though there is significant crossover in their output
strings. This overlap is considered in q-machines, which
allows them to be more efficient. This finding can be
quantified by defining the quantum statistical complex-
ity, Cq for q-machines as

Cq = S(ρ(L)) = −tr(ρlog(ρ)) (7)

where S(ρ) is the von Neumann entropy of the density
matrix ρ and tr(ρlog(ρ)) is calculated by diagonalizing
ρ. In the case that L = 0, Cq = Cµ as expected.

FIG. 4: The Noisy Random Phase Slip Process

PROPERTIES OF Cq

In previous studies it has been noted that Cq ≤ Cµ
for single symbols which is the primary motivation for
the study of q-machines [2]. Furthermore Cq(L) has been
found to decrease monotonically for increasing L [5]. This
result has not been rigorously proven, but it has held true
for all examples of processes that have been tested. Fur-
thermore [5] finds that Cq(L) reaches a minimum value
at L = k, the cryptic order. Examples of this result can
be seen in Figure 6 (k = 2) and Figure 7 (k = 3). The
associated ε-machines can be found in Figures 3 and 4.
Many processes have infinite cryptic orders, in which case
Cq asymptotically approaches a certain value as in Fig-
ure 8, which represents the Nemo Process of Figure 5.
This process also has the property that the decrease in
Cq is not convex, which somewhat complicates the anal-
ysis because a lower bound cannot be established with
certainty.

For every process and ε-machine there is a corre-
sponding reverse machine that generates the same strings
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FIG. 5: The Nemo Process

FIG. 6: Comparison of statistical complexity for the Phase
Slip Backtrack Process

backwards. While a process and its reverse have the same
excess entropy E, the corresponding ε-machines do not
generally have C+

µ = C−µ . Using the construction of [2]
(in which L = 1), C+

q 6= C−q generally as well. The two
are only equal if the reverse machine is identical to the
forward machine (as with the Golden Mean Process in
Fig. 2). However, when words with L > 1 are consid-
ered, the values for C+

q and C−q converge to some value
C∞q for L = k, where k is the cryptic order. These results
can be seen clearly in Figs. 6, 7 and 8. An enumeration
over all machines for which the number of states is 5 or
less and the alphabet size is 3 or less found no q-machines
for which this was false. There is no proof developed, but
this survey suggests that the result is general.

The analysis of the Phase Slip Backtrack Process,
summarized in Figure 6, is particularly noteworthy. The

FIG. 7: Comparison of statistical complexity for the Noisy
Random Phase Slip Process

FIG. 8: Statistical complexity for the Nemo Process

forward ε-machine consists of four causal states, and the
reverse machine has five. The classical statistical com-
plexity is strongly dependent upon the number of causal
states, since it is calculated using the stationary state
distribution, and C−µ > C+

µ as intuition would suggest.
Despite this C+

q and C−q reach the same value at L = k
= 2, suggesting that the q-machine is allowing us to view
an information property that is more fundamental to the
process itself than the ε-machine is capable of.

There are two important future research questions :
‘Why is it that C+

q and C−q converge to the same value?’
and ‘Does the value for C∞q hold in special significance,
and can it be calculated in another way?’ It would be
worthwhile to develop a proof that C+

q = C−q generically.
A possible answer to the second question is that C∞q is
(or is related to) the mutual information between the
past and present for q-machines and that I[S+;S−] 6= E
generally due to the effect of entanglement or other non-
classical correlations. This possibility and its ramifica-
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tions are further addressed below in the discussion of
entanglement in q-machines.

STATE TRACE ENTROPY

Another effort to understand q-machines involves
studying the quantum analogs of the classical entropy
measures. The block entropy has a quantum counterpart
known as the state trace entropy and defined as

STE = S(ρw) (8)

where S(ρ) is the von Neumann entropy and ρw = TrS(ρ)
is a density matrix in the word space resulting from tak-
ing a partial trace of the q-machine matrix over the state
space. The state trace entropy is calculated by creating
the quantum version of a concatenation machine for a
certain word length and then doing the partial trace and
finding the resulting von Neumann entropy. If the par-
tial trace is instead taken over the word space it results
in Cµ regardless of word length. The matrix will be the
same dimension as the number of classical states, and the
eigenvalues are the probabilities of being in a given clas-
sical state. Taking a trace over the diagonalized matrix
(as in (7)) is then equivalent to taking the Shannon en-
tropy of the stationary state distribution, which is equal
to Cµ by (4). The state trace entropy can be seen for a
variety of processes in Figs. 9, 10, 11 and 12.

FIG. 9: State Trace Entropies for the Even Process

The behavior of this state trace entropy is interesting
for a few reasons. It is bounded by the block entropy for
every known process and always seems to asymptotically
approach a value for these processes, but it is not yet
known if this value is calculable in another way. For
L=1 the state trace entropy is equal to the classical block
entropy in most cases. The exceptions are when the ε-
machine had isolated branching (two transitions from one

FIG. 10: State Trace Entropies for the Golden Mean Process

FIG. 11: State Trace Entropies for the Phase Slip Backtrack
Process

state to another with different output symbols) in which
case the block entropy was slightly greater. Unlike Cq,
the STE of a process and its result do not approach the
same value.

The interpretation of the state trace entropy can
be further illuminated by looking at the way it is cal-
culated by eigenvalue decomposition. Given a quantum
state’s density matrix ρ, the eigenvalues of TrS(ρ) deter-
mine the state trace entropy. For a classical machine of
|S| states, the number of non-zero eigenvalues increases
to |S|2 states as L approaches ∞. Thus a general up-
per bound on the state trace entropy for any machine
is −log(1/|S|2). Each eigenvalue of TrS(ρ) is associated
with a state-state path through the classical ε-machine.
Looking specifically at TrS(ρ) diagonal terms that are
non-zero correspond to possible words in the machine,
and any that are zero correspond to impossible words.
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FIG. 12: State Trace Entropies for the Noisy Random Phase
Slip Process

Off-diagonal terms appear when two words form sepa-
rate paths with the same start and end. A machine with
few paths will have TrS(ρ) be a sparse matrix. For ex-
ample, TrS(ρ) for periodic processes is always a diagonal
matrix for all L. Also, from this analysis it is clear that
TrS(ρ) is always a symmetric matrix.

For larger L, the dimension of TrS(ρ) grows and
more state-state paths are possible, resulting in more
eigenvalues until an L is reached at which a word of that
length can serve as a transition between any initial state
and any final state. In some instances this is not pos-
sible and there are less than |S|2 eigenvalues for every
L. Periodic processes are one example due to very re-
stricted transition possibilities. Generally increasing L
results in more possible words connecting pairs of states,
which explains the asymptotically increasing value of the
state trace entropy. From the examples it is also obvi-
ous that the rate of increase in the state trace entropy
is strongly dependent on the size of the machine. For
two state machines (Figures 9 and 10) the state trace
entropy tops out quickly as all eigenvalues are accounted
for and all state-state paths are possible with words of
small L. For larger machines (Figure 11 with four states
and 12 with five states) the increase is more gradual as
it takes longer words to connect each pair of states. Also
machines with more transitions tend to approach their
maximum value more quickly because state-state paths
are easier to establish with shorter words.

Some interesting research questions going forward
are ’Does the state trace entropy always approach a fi-
nite value that can be calculated in another way?’ and
’Is the state trace entropy and its ability to quantify the
’connectedness’ of q-machines useful in physical applica-
tions?’ Additionally a proof that it increases asymptoti-
cally and a more in-depth analysis of that upper bound
would be useful.

ENTANGLEMENT IN QUANTUM AUTOMATA

Entanglement Measures

The ability of q-machines to store and communicate
information more efficiently than classical ε-machines is
likely due to their exploitation of non-classical correla-
tions that make quantum systems unique. The Hilbert
space of the q-machine is bipartite because it consists of
both word and state subspaces. This can be represented
as

Hq−machine = HL
word ⊗Hσ. (9)

The dimension of Hσ is |S|, the number of classical states
in the ε-machine. The dimension of Hword is dependent
on the length of words in the q-machine construction but
is generally of size |A|L where |A| is the size of the alpha-
bet. The two subsystems are said to be entangled if the
q-machine state cannot be represented as a conjunction
of separable states of each.

There are many ways of quantifying the entangle-
ment of bipartite systems, as described in [4], which de-
fine entanglement in slightly different ways. Two inter-
esting measures that were considered are concurrence and
squashed entanglement. Concurrence is limited because
it is only defined for a system of two qubits, and thus
it could only account for a very limited set of q-machine
states. Squashed entanglement is more generic, but its
computation is an NP-hard problem so it cannot be rea-
sonably found for any non-trivial systems.

Entanglement of formation does not suffer from
these limitations, though its calculation can be difficult
to do generically, as is necessary for q-machine states. It
is equal to the number of Bell States necessary to prepare
a copy of ρ, which is found by

Ef (ρ) = inf
∑
j

pjE(Φj) (10)

where the infimum is taken over all pure state decompo-
sitions of ρ, and E(Φ) = S(TrB |Φ〉 〈Φ|). Because there
are an infinite number of pure state decompositions this
calculation is not trivial, but it can be done through a
minimization procedure.

Calculation of Entanglement in a q-machine

The method of calculating entanglement between
the word and state subspaces of the q-machine is adapted
from the method of [6], which applies to all qudit systems
(those with d possible states). The algorithm randomly
creates a pure state decomposition of ρ, finds its entangle-
ment of formation and the gradient and then changes the
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decomposition to minimize the entanglement. In adapt-
ing the code used in [6], we found that it failed for even
simple cases where an analytic calculation was valid. To
solve this we implemented our own version using the same
methods in an iPython notebook. This work was not
completed but is a promising avenue for future research.
It is also worth noting that the entanglement of forma-
tion between the states and words is not the only way
that the q-machine could make use of non-classical cor-
relations to increase efficiency. Other measures of en-
tanglement between other components of the q-machine
may be an easier and more fruitful way to quantify this
information gap between the classical and quantum case,
but this is a reasonable and doable first step.

The Quantum Bi-Directional Machine

One major motivation for calculating entangle-
ment within q-machines is the potential applications
for a quantum bi-directional machine. A classical bi-
directional machine is capable of generating both the
forward and reverse process, and each of its states cor-
responds to one state from the forward machine and one
from the reverse. The excess entropy, E, can be com-
puted using the bi-directional machine by (1). Thus the
quantum bi-directional machine consists of not only the
word and forward causal state subspaces but also the re-
serve state subspace. Its structure is then

Hqbi = HL
word ⊗Hσ+ ⊗Hσ− . (11)

By replacing the measures of the classical excess en-
tropy calculation with their quantum counterparts we
arrive at the equation

S(σ+;σ−) = E (12)

where S(X;Y ) is the von Neumann mutual information
and E is the classical excess entropy. It is possible that
this relation will not hold in the quantum case due to
non-classical correlations between the forward and re-
verse causal states. A mismatch would be notable and
could be explained by calculating the entanglement be-
tween the two subsystems. By comparing this to the
excess entropy of the process, it will hopefully be clear
how the q-machine makes use of non-classical correla-
tions. A likely candidate for the q-machine’s extra ef-
ficiency is this entanglement between the forward and
reverse causal states. In that case the entanglement of
formation between them may be equal to the gap between
Cq and Cµ. Simple examples of quantum bi-directional
machines have been created but code does not yet ex-
ist to calculate them directly from a process’ ε-machine

generically. Additionally the lack of reliable code to cal-
culate the entanglement of formation at present limits
the ability to answer this question now. This result will
be notable whether or not S(σ+;σ−) = E for q-machines.

SUMMARY AND CONCLUSIONS

Quantum automata, particularly q-machines, are an
exciting emerging new model for viewing stochastic pro-
cesses. Using some sort of non-classical correlation they
perform more efficiently than ε-machines as measured by
their respective statistical complexities.

In this report we summarize some studies into their
properties. The first set of results involve the statisti-
cal complexity. Cq is generally lower than its classical
counterpart and decreases monotonically with greater
word length until it reaches a minimum at the cryptic
order. Additionally Cq approaches the same value for
the forward and reverse process, a symmetry which is
not present in the classical formulation. The second area
of study was the state trace entropy which was found
to asymptotically approach a finite value for every ma-
chine studied and to correspond to the state-state paths
within a machine. In a sense it measures a process or ma-
chine’s ’connectedness’ with more transitions resulting in
a higher state trace entropy. The final subproject was the
calculation of entanglement within the q-machine. Algo-
rithms are partially developed to do this for any machine,
and these studies could help answer questions about the
source of the q-machine’s efficiency. In addition, calcu-
lating entanglement and finding the mutual information
between the quantum bi-directional machine’s forward
and reverse causal states has been started, and doing so
would enable us to more fully quantify the q-machine’s
behavior.

These investigations further the idea that q-
machines have special promise in data storage, processing
and communications. Advances in quantum computing
necessitate the development of new and interesting ways
to use information skillfully over quantum channels. Be-
cause they exploit non-classical correlations for greater
efficiency, q-machines could potentially serve many ap-
plications in technology related to quantum computing.
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