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This paper includes the following: A) a review of the computational framework used currently to
identify photons and calculate their arrival times in order to perform Pulse Shape Discrimination
(PSD) analysis on experimental data from the Large Underground Xenon Experiment (LUX); B) a
review of improvements made to the analysis code for identifying and timing photons, including 1)
the addition of area constraint probabilities, and 2) the capacity for the code to identify 5 photons
per PMT instead of 3; and, finally C) a review of our efforts to track and verify improvements made
to our analysis code via a PSD test-run on C HsT and DD calibration data. The research detailed
in this paper supports the UC Davis branch of the LUX PSD analysis effort.

I. INTRODUCTION

From Zwicky’s initial analysis of the Coma cluster
in 1933, to the 2006 observation of the Bullet Cluster
merger, we have ample evidence of the existence of dark
matter [1]. The current problem is to identify the par-
ticle that makes up the majority of dark matter in the
universe. The leading candidates are WIMPs, or weakly
interacting massive particles, a category of particles that
are both cold and non-baryonic. Direct detection of
these WIMPs is the main goal of the Large Underground
Xenon Experiment (LUX).

Direct detection of WIMPs is based on the princi-
pal that most normal radiation, such as v and S, in-
teract electromagnetically producing electronic recoils
(ER). WIMPs, in contrast, only interact via weak and
gravitational forces, and so only produce nuclear recoils
(NR). The ability to accurately discriminate between ER
and NR events is therefore of great importance in success-
fully detecting potential WIMP signals in LUX.

The current method of data discrimination in LUX
uses a charge/light ratio (S2/S1), resulting from ioniza-
tion and excitation of the xenon atoms. Pulse Shape
Discrimination (PSD) is intended to be a complemen-
tary data discrimination method for LUX. PSD presents
the possibility of two-dimensional ER/NR discrimina-
tion, which would aid in further constraining the dark
matter search window (see Fig. 1).

Within this paper, we present a review of the computa-
tional framework being used to identify photons and cal-
culate their arrival times in order to perform PSD anal-
ysis on LUX experimental data. We additionally discuss

* Any specific questions about the UC Davis branch of the
PSD effort in LUX can be addressed to Brian Lenardo (bgle-
nardo@ucdavis.edu) from September 2015 to May 2016.

improvements made to our analysis code, and some pre-
liminary results from a PSD test-run on calibration data.
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FIG. 1. The effect of adding a PSD cut to the dark mat-
ter search window. Horizontal axis is current charge/light
(S2/81) discrimination parameter, and the vertical is the PSD
parameter (graphic credit: B. Lenardo).

II. BACKGROUND
A. WIMPs

The most accepted theory of dark matter is that it is
made up of weakly interacting massive particles, called
WIMPs. The motivation to assume a weakly interact-
ing massive particle comes from such evidence as density
fluctuations in the Cosmic Microwave Background and
the age of galaxies (for details see [1]). However, no par-
ticle in the Standard Model matched the WIMP profile,



so various particle candidates came from supersymme-
try [1] and other theories beyond the Standard Model.
The collection of various particles that could potentially
satisfy the accepted cosmological and astronomical pre-
dictions and observations are collectively called WIMPs.

B. The LUX detector

The LUX detector is a dual-phase (liquid-gas) time
projection chamber located 4850 ft underground at the
Sanford Underground Research Facility in Lead, South
Dakota.

The core of the detector is a large cylinder which con-
tains 350 kg of liquid xenon (LXe), with an array of 61
photomultiplier tubes (PMTs) at each end (see Fig. 2).

LXe is a logical detection medium for WIMPs because
its high Z content yields high interaction potential for
heavy nuclear recoils [2]. It also has a high light yield
which makes detection of NR and ER signals easier than
in other mediums (see the next section for details on sig-
nals in LUX), and it is relatively easy to purify [2].

The PMTs in the LUX detector operate by the fol-
lowing principal: a photon is incident on a transmitting
photocathode, which by the photoelectric effect releases
a photoelectron (phe). This photoelectron is then ac-
celerated through a series of dynodes that exponentially
multiply the number of photoelectrons until a signal can
be digitally measured from the PMT.

Among other precautions, the LUX detector is sub-
merged in a large cylindrical water tank to shield it from
background radiation.
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FIG. 2. The core of the LUX detector, shown are the LXe
cylinder and the two hexagonal PMT arrays. Production of
S1 and S2 signals is also depicted.

1. Signals in LUX

Each scattering interaction in LUX produces two types
of signal: primary scintillation light (S1) and secondary
electroluminescence (S2), both of which are measured by

the PMT arrays (see Fig. 2). S1 signals occur when
an incident particle deposits energy in the liquid xenon,
which causes various xenon atoms to excite and then de-
excite emitting photons (scintillation light), which are
measured by the PMT arrays. The photons measured in
a S2 signal are proportional to the charge released at the
interaction site due to xenon ionization. The electrons
that comprise the S2 signal are drifted up to the top
of the detector by an applied E-field, where they collide
with xenon gas and emit photons from this secondary
interaction, which are then detected by the top PMT
array.

Since a typical incident particle produces a projectile in
the LXe with some energy in the keV range, the complete
S1 or S2 signal we measure for an ER event is the prod-
uct of many xenon excitations and ionizations, and hence
many photons. WIMPs, due to their low cross section,
won’t cascade through the detector like other particles,
but when they interact with a xenon nucleus they impart
some energy to the nucleus in the keV range. This en-
ergy transfer from the WIMP allows the xenon nucleus to
cascade throughout the detector, producing lots of scin-
tillation light and ionization electrons, and hence many
photons in the resulting overall S1 and S2 signals.

2. Calibration Data

For this paper, there are two relevant LUX calibration
data sets, Tritium (CH3T') and DD (neutron generator).

When released into the LXe, C H3T mimics the typical
ER signal. CH3T is ideal because it decays in the energy
region where we most expect to find WIMPs (0-18 keV),
it is easy to dissolve throughout the detector, and it is
easy to remove from the L.Xe post-calibration.

Similarly, the DD (neutron generator), being a source
of neutrons, mimics a typical NR signal. We only uti-
lize the elastic scatters from the DD data, as these are
exactly the signals expected of WIMPs. Inelastic neu-
tron scatters are easy to reject, since these only occur at
energies higher than our region of interest.

These calibration data sets are useful for testing our
analysis in that they mimic the signals of real data, yet
are already defined as NR and ER, and so can provide
good validation for our analysis.

C. A Short Overview of PSD

Pulse Shape Discrimination is an analysis method for
detectors that produce scintillation light, and has been
in use for over forty years [3]. However, the research this
paper supports represents some of the first attempts to
apply PSD to LUX data.

There are many types of PSD, such as the rise time
technique, the charge method, and the optimal method,
which is also called Gatti’s method [3]. In this paper,
we will apply a form of the charge method which uses a
prompt to total time ratio. It has been shown that the
charge method is closest to Gatti’s method in discrimina-



tion potential [3], so a test-run with the charge method
is useful groundwork for future LUX PSD analysis using

Gatti’s method.
1. PSD in LUX

In contrast to the typical discrimination in LUX data
analysis, which uses a charge/light (S2/S1) ratio, PSD in
LUX only considers S1 signals and exploits a property of
the excitation states of xenon for its discrimination.

LXe has two excited states, a singlet and a triplet state,
and their associated lifetimes are on the order of 4 and 24
ns, respectively. It is strongly predicted that ER and NR,
will populate these states differently, with S1 signals from
NR events generating significantly more photons from
the singlet state and relatively few from the triplet state,
while photons from ER S1’s are more evenly distributed
across both states (see Fig.3). Therefore, a time cut in S1
events presents itself as a logical starting point for PSD.

But before we move on to discussing an example of
PSD, some terminology clarifications are in order regard-
ing event measurement. For each ER or NR event in our
analysis, we only consider 1 pulse per event, which is the
S1 signal. This overall S1 pulse, (and hence all its con-
stituent photons), is divided up and measured by the 122
PMT channels in the detector. Each PMT channel is ca-
pable of measuring a certain number of photons. As we
will discuss later in this paper, our analysis framework
is currently capable of identifying up to 5 photons per
PMT channel (versus 3 before our code modifications).
So at 5 photons per channel, with 122 channels, we are in
principle sensitive up to 610 photons per overall S1 pulse,
and hence per ER or NR event. Typically a S1 signal for
an ER or NR event will fall in the range of 0-100 photons
across all PMT channels, as shown in Fig.3 on the left.
As an additional note, when you begin to consider entire
data sets, these are composed of many S1’s and hence
proportionally many more photons.

Now, as mentioned previously, in our analysis we will
apply a version of the charge PSD method for ER and
NR events using a prompt/total time ratio, with the in-
tent of laying groundwork for eventual implementation of
Gatti’s method. To illustrate how we will later apply the
charge PSD method, see Fig.3. On the left, Fig.3 shows
a typical distribution of photons in time for a S1 signal
across all 122 PMT channels for 1 ER and 1 NR event.
To apply a prompt/total discrimination, simply make a
uniform time cut (shown by a vertical line through both
distributions), define everything to the left of the line as
“prompt” photons, and then calculate your prompt/total
time ratio for both ER and NR events. If you repeat this
ratio calculation procedure for all the ER and NR events
in a data set, you will eventually obtain a distribution
of ER and NR prompt/total ratios, which can then be
graphed, as shown in Fig.3, on the right. These ratio
distributions will then generate a PSD cut. In Fig.3 we
could say, for example, that all events which generate a
prompt/total ratio greater than 0.17-0.2 are likely NR
events.

The prompt/total ratio is effective and relatively sim-
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FIG. 3. A schematic of photons in time for 1 ER and 1 NR
event, and some associated potential PSD prompt/total time
ratio distributions. The left is a typical example of the dis-
tribution of photons in time for a S1 signal across all 122
PMT channels for ER and NR events with a uniform time
cut applied; the right is an example of the prompt/total ra-
tio distributions that can be obtained from many such events
after applying the charge PSD method. The several overlaid
ER and NR ratio distributions show the effect of increasing
number of photons. The figure at the right was modified from
G. Ranucci [3].

ple to calculate. However, in order to perform PSD anal-
ysis, it is necessary to first assign photon arrival times
(the time it takes for the photons to be measured by a
PMT) to all the photons within an overall S1 pulse. And
in order to assign arrival times, you must first accurately
determine the number of photons measured in a pulse
shape. For the remainder of this paper, Photon Timing
will be the term used to describe these steps of identify-
ing photons and assigning their arrival times. It is this
photon timing process that is the subject of the analysis
of the next section.

III. PHOTON TIMING: COMPUTATIONAL
ANALYSIS FRAMEWORK

A. The PhotonTiming Module

Our photon timing analysis is performed with a set
of C++ and ROOT executable C++ programs. The
PhotonTiming Module is a set of C++ programs with
ROOQT capabilities enabled, executed in a python shell.
The module is written to take one or more LUX data
sets as input, process them into *.root files containing
several useful quantities such as the area of each pulse in
the data set, and then identify the number of photons in
each pulse in the data set and their corresponding arrival
times (before writing all the information to the root file
the module created).

The part of the module this paper will concentrate
on will be the identifying of photons and assigning their
arrival times, as this is the part of the module we have
made significant improvements to.

As previously mentioned, for each ER or NR event we



consider one signal, the overall S1 pulse. This pulse is
divided and measured by 122 PMT channels. Before our
improvements, the general process by which the module
identified the number of photons in a S1 pulse on the
per PMT level was as follows: Given a set of average
pulse shapes for 1-3 photons incident on a PMT, a best-
likelihood fit was calculated for how well a pulse in our
data matched each average pulse. The number of photons
in a specific PMT pulse shape was then assigned based on
whichever likelihood fit was the largest, and the location
of each photon in the overall pulse and a corresponding
arrival time was then calculated.

As a side note, photon arrival times are measured rela-
tive to the start of the S1 signal using the 25% area time.
The 25% are time, which we will mention again later, is
the time at which 25% of the overall S1 pulse has been
integrated over. In our analysis, the integral over the
overall S1 pulse across time is the proxy for energy.

But going back to our original identification method,
an example schematic of the likelihood fitting procedure
is depicted in Fig. 4, where on the bottom you can clearly
see a waveform with two distinct peaks, corresponding to
two photons within the overall PMT pulse shape. The
bottom right shows an example of the process the pro-
gram goes through to fit two photons to this pulse shape,
in order to determine each photon’s arrival time.
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FIG. 4. An example schematic of how the PhotonTiming
Module fits photons to pulse shapes on a per PMT level. The
bottom is an example of fitting photons to a pulse with two
distinct peaks, the top shows a pulse shape where the pho-
tons are closer than two distinct peaks. (Graphic credit: B.
Lenardo).

This method of assigning photons to pulses based on
a likelihood fit is effective when there are distinct peaks,
however it is not sufficiently accurate to correctly iden-
tify photons when photon peaks are not clearly defined,
as in the top of Fig.4. This initial insufficiency in our
code led to the first of the photon timing improvements
within our module, which was the addition of an area
constraints probability in how the module decides the
number of photons to assign to a pulse on the per PMT
level.

B. Improvements to the PhotonTiming Module
1. Addition of Area Constraints

The idea of the area constraints probability comes from
a division of statistical analysis called Bayesian Model
Comparison, detailed in [4]. Consider the following equa-
tion:

P(H;|D) oc P(D|H;)P(H,;) (1)

P(H;|D) is the probability of a specific model H; given
the data D. So for our purposes, P(H;|D) is the proba-
bility of i photons being contained in a pulse, given the
data of the pulse itself. P(D|H;) is the likelihood fit
that we mentioned earlier, the best fit for our data given
an averaged pulse shape for i photons. So the original
method the module used to determined how many pho-
tons were in a pulse at the per PMT level was to calculate
the probability based on this equation:

P(H;|D) < P(D|H;) (2)

and then assign the number of photons to a pulse
based on whichever probability, P(H;|D) or P(Hz|D)
or P(H3|D), was the greatest.

However, if you look again equation 1, you see an-
other factor, P(H;), or the probability of your specific
model H;. We have interpreted P(H;) to be the area
constraints probability. This area constraints probabil-
ity works like this: given the PMT pulse the module is
analyzing, the module calculates the pulse area and de-
termines the probability that the pulse area came from
an area probability distribution of 1 or more incident
photons. In other words, the module contains equations
for specific probability distribution functions for one to
the total number of photons it is capable of assigning
to a pulse shape. The code takes the pulse area as an
input “x-value” and outputs the corresponding function
value, or P(H;), for each of the probability distributions.
P(H;) is then taken into account when the module cal-
culates the probabilities P(H;|D) for each of the possible
numbers of photons H; it could assign to the PMT pulse
being analyzed.

This modification of adding the area constraints prob-
ability is significant in that the module now determines
how many photons it assigns to a pulse on the per PMT
level based on pulse shape and pulse area, which, as we
will discuss later, drastically improves our ability to re-
solve photons closer than distinct spikes (see the top of
Fig.4).

2. Creating the Area Constraint Probability Distributions

To create the area constraint probability distributions
mentioned in the previous section, the first step was to
create average pulse area distributions for incident sin-
gle photons (single photoelectrons) on each PMT in the



LUX detector, following the work done by A. Manalaysay
[5]. We know that creating unique single photoelectron
(sphe) area distributions for each PMT in the detector is
necessary due to each PMT having its own resolution id-
iosyncrasies that affect the distribution of possible pulse
areas, among other things [5]. An example of an aver-
age sphe pulse area distribution for PMT 60 is shown in
Fig.5.
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FIG. 5. Average sphe pulse area distribution for PMT 60.

To create the average sphe pulse area distributions for
all 122 LUX PMTs, the following process was utilized for
a ROOT executable C++ code:

e Input data: 5 CHsT data sets (December Run 03
LUX data)

e Select only S1 pulses

e Select only S1 pulses with overall pulse area less
than 10 phe

e For each PMT, histogram all pulse areas that
passed the selection criteria across all 5 data sets

The pulse area below 10 phe cut insures that we’re only
considering S1 pulses that have a low probability of hav-
ing 2 photons incident on the same PMT, which would
bias the sphe distributions. Since we have 122 PMT
channels, and if we assume all channels are equally likely,
at high energies (and hence higher photon count) we are
likely to see multiple photons on the same PMT. Con-
versely, if we only had 10 or less photons (less than 10
phe), we are very unlikely to have 2 photons incident on
the same PMT.

The process to turn these sphe PMT area distribu-
tions into specific area probability distribution functions
for each PMT included the following: Another ROOT
executable C++ program was written to utilize Minuit,
the FORTRAN multi-parameter capable fitting program
adapted for ROOT, in order to fit each area distribution
with the following constrained double Gaussian function,
using a Chi-squared fit.
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We fit a double Gaussian function because when 1 photon
is incident on a PMT, there is a probability of measuring
1 or 2 corresponding photoelectrons in your signal. We
expect the means of the function, corresponding to pulse
areas, to be distributed around 1 and 2 phe as a result.
The other stipulation in the function, that the second
standard deviation be v/2 of the first, is assumed for both
mathematical reasons and due to previous experience.

The results of fitting PMT 60’s sphe area distribution
with this double Gaussian are shown in Fig.6. We con-
strain the fit to be between 0.4 and 3 phe to account for
edge effects in the detector.
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FIG. 6. Double Gaussian fitted sphe area distribution for
PMT 60.

The area distribution fitting code then extracts the 4
fit parameters (a, b, u, o) in equation 3, and then uses
them to specify a unique double Gaussian function for
each PMT. These double Gaussian functions are then
normalized to create the sphe area constraint probability
functions for each PMT in LUX.

The above process creates the area constraint probabil-
ity function for single photons incident on a PMT, which
yields P(Hy); but to create probability distribution func-
tions for more than 1 incident photon, we convolve the
general sphe double Gaussian function (eq. 3) multiple
times. For example, to create the area constraint func-
tion for 2 photons incident on a PMT, simply convolve
the general sphe double Gaussian function (eq.3) with
itself, and then normalize the result to obtain a dphe
area constraint probability distribution function. We as-
sume we can take the analytical convolution rather than
a numerical approach because the tails on the resulting
Gaussians all go to zero fast enough so the differences in
approach would be extremely negligible.

The PhotonTiming module stores all the PMT specific
sphe parameters, and when it calculates P(H;) for 1 or
more incident photons, it takes the PMT number as one
of its inputs, and then inserts the specific sphe param-
eters into whichever general area constraint probability
distribution function is being called for.



3. 5 photon capability

Besides the addition of area constraint probabilities,
which as previously discussed is extremely useful in help-
ing us correctly identify photons closer than two distinct
peaks, another modification we made to our original code
was introducing the capability of identifying up to 5 pho-
tons per PMT channel. Previously when analyzing our
PMT pulse shapes, the code was only capable of identify-
ing and timing up to 3 photons in a waveform on the per
PMT level. We enabled the logical decisions in our code
so that the module is now able to identity and time up
to 5 photons per PMT pulse. A test of our code on the
S1 signals in one of our 5 C'H3T data sets shows that we
are indeed identifying 1-5 photons in logical proportions
to each other (see Fig.7).
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FIG. 7. Test of 5 photon enabled PhotonTiming Module on
1 CH3T data set. Single photons are counted most often,
and the number of 2-5 photons counted decrease in expected
proportions.

Further diagnostics were then run on the same C' H3T
data set to investigate the accuracy of the module’s pho-
ton identification with the 5 photon capability enabled.
Figure 8 displays a plot of Photon Count/Pulse Area vs
Photon Count for the data set, with the mean of the dis-
tribution noted in blue squares. Pulse area here refers to
the pulse area of individual photons contained in the per
PMT pulses, from all the S1 signals in the data set. This
distribution is useful because it gives us a clue as to how
effectively our module is counting photons when it con-
siders their associated pulse areas. A relatively narrow
distribution with a mean around y = 1 would be ideal,
as that would signify we are reconstructing 100 % of the
photons we identify correctly (with a one-to-one Photon
Count to Pulse Area ratio) with no loss of identifica-
tion power at higher photon count (which corresponds to
higher energies).

The actual mean of this distribution is plotted in Fig.9,
where the linear fit is 98.03 — 0.16232%. This signifies a
successful reconstruction of 98% of our initial photons,
with a gradual loss of reconstruction power less than
0.2%. The fit was performed between 15-80 photons, in
order to discount “turn-up” and “drop-off” effects. The
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FIG. 8. Photon Count/Pulse Area vs Photon Count distri-
bution for 1 CH3T data set. Mean of the distribution shown
in the blue dotted line.
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FIG. 9. Mean fit line of the Photon Count/Pulse Area vs
Photon Count distribution shown in figure 8. The fit was cal-
culated between 15 - 80 photons to discount “turn-up” and
“drop-off” effects. A fit line of 98.03 - 0.1623x % was calcu-
lated with the 5 photon and area constraint enabled module.

turn-up effect has been observed throughout the use of
our module, it refers to the tendency of the mean of the
distribution in fig. 8 to be greater than 1 for low photon
count. Drop-off is the opposite, it is the tendency for the
mean of the distribution to drift towards much less than
y = 1 at high photon count, contrary to the mean behav-
ior of the bulk of the distribution. We believe drop-off
is simply caused by a lack of high statistics within the
high energy regime in our current data sets, and is not a
symptom of the success of the module itself.



IV. RESULTS AND DISCUSSION
A. Results of PhotonTiming Module Improvements

The real significance of the area constraint and 5 pho-
ton capability modifications to the PhotonTiming Mod-
ule becomes apparent when you make a comparison be-
tween the state of the module before and after those im-
provements. Figure 10 shows the mean fit lines of the
same C'H3T data set as in Fig.8 and Fig.9, both with
and without the area constraints and 5 photon per PMT
capability included in the module. It is apparent from the
fit lines that we have made noticeable improvements, as
we are now reconstructing 98% of our initially measured
photons, instead of 97%, and we now have a loss of pho-
ton reconstruction power of 0.1623% instead of 0.1744%.
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FIG. 10. Mean fit line comparison of the original and current
state of the PhotonTiming Module’s reconstruction capabili-
ties for the same C'H3T data set. As denoted in the legend,
the blue line is the mean fit for the data set with the area
constraints and 5 photon per PMT capability, whereas the
yellow is the data set without those improvements.

B. Preliminary PSD on Calibration Data

After the success of the improvements to the Photon-
Timing Module, we ran a preliminary PSD analysis over
ER and NR event calibration data (CHsT and DD, re-
spectively) using the form of the charge PSD method that
utilizes a prompt/total time ratio (as detailed earlier in
this paper). We ran the PhotonTiming Module over the
same 5 CH5T data sets (Run 03 December) that have
been previously utilized in this paper, as well as 20 DD
(Run 03) data sets. The larger number of NR data sets
is motivated by the fact that NR data typically has lower
statistics.

Figure 11 shows the average S1 ER and NR pulses for
many events across all the data sets we processed. As
shown on the x-axis, to obtain each averaged pulse shape
we subtracted a 25 % area time from each photon’s arrival
time in order to line up the average pulse distributions for
better comparison. It is apparent in Fig.11 that the av-
erage NR pulse is both slightly narrower and distributed

earlier in time. We would expect both these properties
since NR photons typically result from the singlet state
of excited LXe rather than the triplet (and so most of the
photons arrive earlier in time), whereas ER photons are
more evenly distributed across both states, and therefore
throughout time.
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FIG. 11. Average ER and NR S1 pulse shapes for our

prompt/total PSD test-run.

After validating that the average overall S1 pulse
shapes for ER and NR were as expected, we calculated
a prompt-to-total ratio for all the S1 pulses across all 25
data sets, the results of which are shown in Fig.12. While
the PSD ratio distributions of Fig.12 are not as clearly
distinguishable as the sample distributions of Fig.3, the
fact that they are distinct from one another is encourag-
ing for the future of this analysis method.
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FIG. 12. PSD test-run ratio distributions for a prompt/total
time ratio.



V. CONCLUSIONS

This paper has been a review of the noticeable progress
made in our PSD analysis capabilities. This progress is
due to code changes made to the PhotonTiming Module,
such as the addition of area constraints and the capabil-
ity to identify 5 (versus 3) photons per PMT (see Fig.10),
which have significantly improved how accurately we
identify photons and assign their arrival times. Further
research, however, is still necessary to understand and
mitigate small idiosyncrasies in the PhotonTiming Mod-
ule such as the turn-up effect.

Furthermore, the data gained from the preliminary
PSD prompt/total test-run on calibration data is encour-
aging for the future of LUX PSD research. The fact
that our module identifies noticeably different average
S1 pulse shapes for ER and NR (Fig.11), and that the
PSD ratio distributions for the same set of S1 pulses are
distinct from one another (Fig.12), shows that our mod-
ule can discriminate between ER and NR events. These
preliminary results warrant further testing of the Photo-
Timing Module on actual data, as well as utilizing even
more accurate PSD methods, such as Gatti’s method, to
see if we can realize even greater discrimination potential.
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