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Abstract

“Predicted Information Gain” (PIG) is an approach to maching learning, developed first by the Red-
wood Center for Theoretical Neuroscience, which builds a generalized internal model of agent-evironment
interactions. This paper outlines how PIG was implemented with hardware from the Robotic Multiagent
Development System (RoMADS). Most machine learning uses a specific task-based reward function, but
the PIG approach is a more general model of learning and exploration. Our results show that PIG is ef-
fective at building consistent models, but for very simple environments, is not significantly more efficient
than randomly chosen actions. Analysis was done on the resulting models and also on the accuracy of
the algorithm’s predictions about information gain. Suggestions are also given for future research.
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1 Introduction

In machine learning, most advances are made in training computers to perform specific tasks - tasks which
can range from playing chess, to driving a car, to making us coffee in the morning. However, important
research is also being done in the field of exploratory machine learning - investigating algorithms for agents
that are exploring unknown environments. This idea has significant overlap with theoretical neuroscience,
and this paper will draw heavily on research done at the Redwood Center for Theoretical Neuroscience at
UC Berkeley [1].

The usefulness of such research in neuroscience is to understand and model how intelligent agents learn
and make decisions when exploring new situations. Understanding this process could lead to advances in
nearly all machine learning applications, as well as increasing our understanding of human thought processes.

In the Complexity Sciences Center at UC Davis, the research focus is on generalizing the idea of what it
means to have structure in data, as well as how to describe this structure using computational techniques
(such as epsilon machines). Physicists are nothing more than agents using their basic sensors and actuators
to build tools to understand the universe, and generalizing a theory of this process contributes to all physics
research. Information-theoretic machine learning also hints at the possibility of automating large parts of
the physics research process. More prosaically, this paper will focus on how a specific learning algorithm
(predicted information gain, or PIG) performs when applied to exploratory robots. These agents were tested
with various environments, and options for extending this research were explored.

2 Overview of PIG

It will be helpful to define some terms before explaining PIG:

• Agent: the part of the system which is making decisions and collecting data.

• Action: how the agent interacts with its environment.

• State: what the agent is able to observe about its environment.

• Internal Model: the representation that the agent makes of its environment

The basic motivation of the PIG strategy is to choose actions that will maximize the information added
to the agent’s model of the world. To calculate this, we must define a probability distribution, which we
will call Θsa. This is a distribution over all possible resulting states for an agent that is in state s and
chooses action a. If we want to compare two of these distributions, noted as Θsa and Θ̂sa, we can use the
Kullback-Liebler divergence (DKL) from information theory [3]:

DKL(Θsa||Θ̂sa) :=

N∑
s′=1

Θsas′ log2(
Θsas′

Θ̂sas′
) (1)

s′ represents states that can result after action a is taken in state s. The important characteristic of the
KL-divergence is that as distributions become more similar, the ratio inside the log will approach one, and
the divergence will approach zero. Thus, the KL-divergence between two identical distributions is zero, and
is positive and larger as the distributions become more different.

The agent’s internal model is the collection of all Θsa for all possible states and actions. To compare
two internal models, we define the missing information (IM ), which is simply the sum of divergences over all
states and actions:

IM (Θ||Θ̂) :=
∑
s,a

DKL(Θsa||Θ̂sa) (2)

It is important to note that internal models can only be compared if they have the same dimensions in
state and action space.

The actual “Predicted Information Gain” algorithm uses missing information as a way to quantify how
much information will be gained by certain actions. When the agent is in state s, it constructs a different
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hypothetical model for each action a and state s∗ that could result from that state. For each action, the
agent performs the calculation in Equation 3 to calculate the predicted information gain for that action.

PIG(a, s) :=
∑
s∗

Θsas∗DKL(Θs→s∗

sa ||Θsa) (3)

This calculation is essentially the same as finding the missing information between the agent’s current
model and all the hypothetical models, except that each hypothetical scenario is weighted by Θsas∗ , the
probability of that hypothetical outcome actually occurring. In this way, the agent balances outcomes that
are unlikely and high in information gain with outcomes that are very likely but thus low in information
gain. This is related to the exploration vs. exploitation characterization of strategies in machine learning
[4].

The agent chooses the action that maximizes PIG. This action results in the agent then observing one of
the predicted states. The state-action-resulting-state combination is recorded as data, and this data is used
to update the probabilities in the internal model of the agent. The PIG algorithm uses Bayesian updating
to change the probability distributions in the agent’s internal model. Bayesian updating is a method where
the agent starts with a prior probability distribution, chosen by the designer of the agent, and that prior is
updated by the data collected through successive actions. If a very inaccurate prior distribution is chosen,
it can dramatically change the effectiveness of PIG [1]. Specific details of the prior choice and updating
methods will be given in Section 3.2.

3 Implementation

3.1 Existing hardware

The goal of this project was to implement PIG with existing hardware from a previous project [2]. See
Figure 1 for an image of the robot used. The robot has four binary light/dark sensors, one on each corner of
the robot, pointing down. These sensors were used to interact with various environments, which consisted of
dark lines printed on white paper. If the robot travels forward, and moves over a dark line, it is hardwired
to stop. This means that the dark lines serve effectively as “walls” while the light paper serves as empty
space that the robot can move through.

Figure 1: A photograph of the robot from the side. One of the wheels is visible, along with two of the visual
sensors (the black objects in the same plane as the wheel).

The robots were pre-programmed with four possible actions: moving forward for a set length of time,
turning 90 degrees to the right, turning 90 degrees to the left, and turning 180 degrees (about face). Because
there are four binary sensors, there are sixteen possible states for the robot to be in, where a state is defined
as a four-digit binary number representing the concatenated readouts of the sensors. Some of these states,
such as all sensors reading black, are impossible or very unlikely, but for the sake of simplicity, all states
were included in calculations.
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3.2 Choice of Prior

Per the suggestions of the Redwood group, we began with a uniformly distributed prior probability distri-
bution. That is, the robots started out by choosing actions based on the belief that any action, taken from
any state, is equally likely to lead to any other state. We chose a prior distribution with the form of a
Dirichlet distribution, as this has a closed-form solution for calculating the resulting transition probabilities
conditioned by data. See the appendix of [1] for a more detailed analysis of different priors. Essentially,
the Bayesian estimate for transition probabilities depends only on Fsas′ , a count of the number of times the
transition from s to s′ under action a has occured; α, a parameter that can be tuned; and Ns, the number
of neighboring states. The Bayesian estimate is given by:

Θsas′ =
Fsas′ + α

Nsα+
∑

s∗ Fsas∗
(4)

In the limit of large amounts of data, this formalism approaches an intuitive ratio: the likelihood of a
transition is the number of times a specific transition was observed, divided by the total number of transitions
observed. Using this formula, we are able to update the internal model of the agent, and construct a model
of state-action-state transition probabilities from the data that the agent observes.

3.3 Unique features of this implementation

There are several features of this project that differ from previous (computational) implementations of PIG.
The implementation by Little & Sommer [1] examined three different environments - mazes, dense worlds,
and 1-2-3 worlds. Mazes represent a spatial setup, where states represent a specific position in the maze.
Dense worlds consist of states that can all transition to each other with different probabilities depending on
the action chosen. 1-2-3 worlds are similar to dense worlds, but depending on the action, either one, two, or
three states are accessible from each state (see [1] for a more detailed explanation).

In our implementation, our state space combines some features from dense worlds and mazes. To a human
observer, the setup looks like a very simple maze - for instance, one environment is a rectangle formed from
black tape with all white inside. The robot navigates around inside this rectangle. If the robot were able
to detect its position in space, this would be identical to the maze setup. However, all the robot can sense
is which of its four sensors are touching a wall. In theory, there is nothing inherent about the sensors that
stops any sensor state from being followed by any other sensor state in time, so our environment looks more
like a dense world, where the 16 sensor states are all connected to each other.

The unique, and complicating factor of this implementation is that the probability of changing from one
state to the other depends on the agent’s position in space, which is a hidden environmental variable.

Another unique part of this implementation is the fallibility of physical hardware - for instance, the two
wheels on the robot were controlled by separate motors, and if the motors weren’t warmed up, one wheel
would turn noticably faster than the other, causing the robot to turn instead of moving in straight lines.
Sensors sometimes return false readings. These, and other hardware challenges, test the robustness of PIG
to false data.

The final unique challenge with physical implementation is that we do not have a pre-designed “true
model” to compare to the internal model generated by the agent, as the original Redwood paper did. Thus,
we must find other ways to confirm that the generated internal models actually do correspond with reality.

4 Results

The robot, using PIG to control its actions, was tested many times. Three different environments were used
- a rectangle, triangle, and circle. The environments were normalized by having the longest possible straight
path within the environment be the same length for each. The robot navigated the white space bounded by
black tape in these shapes. Usually, the robot ran for 20 minutes. Longer trials showed that the internal
model ceased to change significantly with more data collection (see Section 4.2).

There were four main topics that I analyzed - first, what is a good way to represent the internal models
generated by the robots? In general, these are three-dimensional matrices with 1024 entries (16 start states,
16 end states, 4 possible actions). A way to visualize this data and extract useful information needed to
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be found. Second, I needed to confirm that PIG was producing converged internal models, and find a way
to quantify how the models changed over time. Third, I chose to analyze the accuracy of PIG - does the
amount of information that an action is predicted to gain the agent correspond to the amount of information
that is actually gained? Fourth and finally, I analyzed the differences between models generated by different
environments, to see if the agents are actually extracting information about the structure of their environment
from the data they collect.

4.1 How to Represent Internal Models

I chose to represent the internal models graphically, by representing the sensor states as nodes and the
transition probabilities as edges. If all data was included, these graphs would look like 16 nodes, with all
nodes connected to all other nodes - in other words, not very easy to understand.

To trim the graph, first I noticed that many of the state/action combinations had not been visited very
often, making the data learned from those states not very useful. By taking the state-action pair which was
visited the most, and calculating a cutoff of 10% of that frequency, we can make an intrinsic measurement of
frequent states. To trim the graphs, I dropped the states (nodes of the graph) that had a frequency of less
than 10% of the maximum frequency. I also dropped edges that had a less than 10% probability associated
with them. The resulting graphs looked like Figure 2. We can see in Figure 2 that only nine of the 16 states
had high enough frequencies to be included. Also, many edges were dropped - for example, the states in
the top left and right corners of the graph only have one incoming edge and no outgoing edges. This means
that under the “turn right” action, either the likeliest resulting states were not visited very often, or the
distribution between the 16 possible resulting states was uniform enough to drop each transition probability
below 10%. It is important to note that each graph corresponds to only one action, so four graphs can be
generated for each internal model.

Figure 2: Graph of transitions for “Turn Right” action in the rectangle environment, with probabilities
< 10% not shown, and infrequently visited states not shown. Edge weight is proportional to transition
probability.

Several things are notable about this type of representation. First of all, we can do some “sanity checks”
to make sure that the model makes physical sense. For example, since the robot turns right in place, we
would expect that if the robot is in the state with all sensors white (meaning it is not touching a wall), and
it turns right, it should remain in that state. This is what we see in the lower right hand corner of Figure
2, where the all-white state returns to itself with high probability. The rest of the transitions pass similar
sanity checks - if the robot has one or two sensors on a wall, and rotates, there are certain resulting states
that are expected to follow and we see that the graph reflects these.

It is important to note places where the graph shows the imperfections of an embodied robot. For
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example, we would expect more symmetry in the graph for a perfect robot. Not all of the states with one
sensor activated connect to each other with equal weights as we would expect, and not all of them connect
to the state with no sensors activiated. The physical robot has assymetries and stochastic influences which
are often reflected in the graphs of the internal models. Further analysis of the differences between graphs
will be done in Section 4.4.

4.2 Convergence of the Internal Model & Algorithm Efficiency

As another check, I analyzed whether the models generated by PIG converged over time. PIG would not
be a very useful algorithm if the choices of actions caused the model to constantly change. To confirm
convergence, the missing information between models was calculated after every 50 actions. For example,
the missing information between the starting model and the model after 50 actions was calculated, as well as
the missing information between the models at 50 actions and 100 actions, etc. The results of this analysis
for all three environments is shown in Figure 3.
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Figure 3: Comparison of successive missing information for different strategies and environments.

The figure shows that missing information between successive models decreases quickly over time (700
actions corresponds to roughly 10 minutes of letting the robot explore). These results were averaged over 3
runs for each scenario, and so provide a rough idea of the convergence behavior.

The lines labelled “random” indicate that a random controller was used to choose actions for those
runs. As can be seen, the random controllers create models that converge at about the same rate as the
PIG strategy. Ideally, PIG would be choosing actions more effectively than random, and thus would create
models that converged more quickly. However, this lack of performance gain is to be expected for our specific
configuration. As mentioned in Section 3.3, our state space, with all-to-all connection corresponds to the
“dense worlds” analyzed by Little & Sommer [1]. Figure 4, taken from the work by the Redwood group,
shows that for dense worlds, PIG did not outperform a random strategy (far left graph). Our environments
were similar to dense worlds, except that the transition probabilities between states depend on the robot’s
position in space, thus making this an even more difficult environment to navigate than the dense worlds
described by Little & Sommer. Robots using PIG in environments that had fewer hidden variables and that
were less similar to dense worlds would most likely see more advantages from the PIG algorithm.
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Figure 4: Figure from [1] comparing model convergence for different environments and strategies.

4.3 Accuracy of Information Gain Predictions

Predicted information gain, as calculated in Equation 3, is essentially the expected value of the information
gain of all possible outcomes of an action. Because of this, we would expect that if predictions are being
made well, the PIG of an action and the actual information gained by that action would tend to be similar.
Actual gained information is calculated as the missing information between the model before the action and
the model after. Figure 5 shows the result when predicted and actual information gain are plotted against
each other.
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Figure 5: Predicted and actual information gain per action, with the probability of the actual resulting
state shown.

Figure 5 shows that the agents tend to be over-confident in their predictions - the blue line is the identity,
where we would expect the average of the points to lie. Instead, predicted information gain is consistently
higher than the actual information gain. However, by showing the probability of the actual resulting state,
we can see that many of the actions resulted in a state with low probability - indicating that the data that
the agents get from taking actions is highly unpredictable. This is because the environment is a hidden
variable - the same state and action combination can result in very different outcomes depending on where
the robot is in space, something that is unknown to the agent.
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The apparent structure of the graph is a result of the discreteness of our setup - as seen in Equation 4,
the transition probabilities are updated discretely, and information gain is calculated using these transition
probabilities.

The other interesting feature of this graph, not apparent here, is that over time while the robot is running,
both PIG and actual information gain decrease toward zero. This occurs as the model becomes more accurate,
and as additional data reveals less surprises about how the robot interacts with its environment.

To analyze whether any actions were more inaccurate than others, or if any actions were correlated with
information gain, I also plotted a similar graph but colored the points corresponding to what action was
taken. The results can be seen in Figure 6.

0.000 0.005 0.010 0.015 0.020
0.00

0.02

0.04

0.06

0.08

0.10

Actual Information Gain (bits)

P
re
di
ct
ed
In
fo
rm
at
io
n
G
ai
n
(b
its

)

Accuracy of PIG

About Face

Right

Left

Forward

Figure 6: Predicted and actual information gain, colored by action.

There is not much correlation between action and information gain. The “forward” action seems to
group at high and low information gain, possibly because the forward direction was the one most affected
by hardware errors (the robot would tend to curve to the right if not warmed up).

4.4 Comparisons of Environments

The last analysis done, one which is not specific to PIG, was to analyze the structure of the calculated
internal models. Reassuringly, the internal models reflect many common-sense behaviors. For example, we
can compare the graphs for the “forward” action in three different environments.

In Figures 7, 8, and 9 there are some shared characteristics. For example, if one or both of the front
sensors are activated (the top two squares are black), this means that the robot’s front is up against a wall.
In these cases, we would expect that if the robot went forward, the robot’s front would still be up against
the wall. This is what we see - in all three environments, the most likely transitions (thickest edges) are the
ones corresponding to this scenario.

The differences between the graphs reflect the features of the environments. In Figure 7 (rectangle),
seven states met the frequency cutoff (state-action combination visited more than 10% of the maximum
state-action frequency), and the included states are the ones where one sensor, no sensors, or the front or
back two sensors are touching the walls. In Figure 8 (triangle), we see that the state with the back two
sensors against a wall is missing, meaning it was not visited frequently enough to be visualized in the graph.
In Figure 9 (circle), even the state with the front two sensors is missing. These differences in frequently
visited states reflect the properties of the environments - since the robot is configured to move at 90 degree
angles, it is well suited to environments like the rectangle, with walls at 90 degree angles. The triangle
environment, with walls at 60 degrees to each other, is a bit harder for this robot to navigate, and the
circular environment with curved walls makes it very difficult for the robot to get more than one sensor
on the wall. We can see this reflected in Figures 7-9: the difficulty of exploration is evidenced by how the
rectangle internal model has the most states (seven nodes in the graph), compared to the triangle model
with six nodes and the circle model with five states. This indicates that for more “difficult” environments,
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state frequencies are clustered and the robot is not able to explore other states as easily. Since PIG is
fundamentally an exploration algorithm, we would hope that a large number of the possible states would be
visited frequently and thus represented in the graph.

So we can see that the resulting internal models reflect not only the structure of the environment, but
also the sensor and actuator limitations of the robot. Additionally, the structures of the internal models
are not unique to PIG - in the limit of large numbers of actions, the PIG-generated and random-action-
generated models converge. The PIG strategy is slightly better at accessing unlikely states earlier, so when
randomly-generated and PIG-generated models are compared, the PIG models usually include at least one
more state than the randomly-generated models.

Figure 7: A graph of the “Forward” action state transitions, for a rectangle environment.

Figure 8: A graph of the “Forward” action state transitions, for a triangle environment.
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Figure 9: A graph of the “Forward” action state transitions, for a circular environment.

5 Future Investigations

There are several avenues of research that could be continued from this point. They include:

• Combining PIG with other objective functions or behavior models: PIG is an effective
strategy for modelling learning in a new environment. However, as the agent explores more and builds
a good model of its environment, the average information gain of each action decreases and the agent
no longer has a strong driving force to choose one action over another.

To better model how agents actually explore environments (from a neuroscience perspective), a second-
stage learning algorithm could be included, where when information gain per action decreases below
some threshold, a different strategy is implemented.

One idea for a second-stage learning algorithm is to have the agent make predictions about what state
sequences would result from given start states and action sequences. These predictions could vary in
length, and the relationship between prediction length and prediction accuracy could be determined
(for example, the agent might be able to make predictions three actions in the future with 75% accuracy,
but accuracy drops to 25% when predicting four actions ahead in time). The accuracy of predictions
would be a measure of how unpredictable the environment is (in our case, with static environments,
this means how much the environment varies in space). The agent could then modify things about its
strategy to maximize accuracy of predictions. This could mean that the agent changes its objective
function to skew toward “exploitation” of its environment, by repeating state-action combinations
more, or it could mean that the agent modifies its sensors, actuators, or memory.

• Using PIG with more advanced sensors or actuators: Part of the reason that PIG was not more
efficient than random action choice was because the agent had very limited sensory information about
a hidden environment. An agent that was able to keep track of where it is in space would explore
environments very efficiently, as shown by Little & Sommer. One way to improve the performance
of PIG would be to decrease how hidden the environment is to the agent, by adding more sensing
capabilities.

It would also be possible that the effectiveness of PIG would change if the robot had access to more
actions - for instance, if the angle of the right and left turns was variable, it might be easier for the
robot to build models of environments which have non-orthogonal components.

• Including more memory, and using the Chinese Restaurant Process: Another way to improve
PIG effectiveness in a highly hidden environment would be to build memory into the algorithm. One
way to do this, which I have done some preliminary tests with, is to encode multiple states into one
“state” that is then what the PIG algorithm uses to make calculations. For example, if the current
state of the agent is state 0 (binary sensor value 0000), and the previous state was also state 0, these
two binary representations can be concatenated into a new state. If we started with 16 possible
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sensor states, we would have 256 states with one time step of memory built in. The computational
complexity of PIG scales exponentially with the size of the state space, and the size of the state space
scales exponentially with the number of time steps - this is clearly not optimal for fast computation. If
the decision is made to include the actions that caused transitions between states (which is very useful
information), the memory scales even faster.

One possible solution to this problem of computational complexity is to use the Chinese Restaurant
process [5], which allows the elimination of the prior internal model. Instead, the Chinese Restaurant
process starts with one known (observed) state, assumes the state space is infinite, and always has a
nonzero probability of discovering a new state. This means that when PIG is calculated, the agent
will calculate the PIG based on all known states, but also the PIG of discovering a new state. Thus,
instead of calculating PIG for an entire space of all possible state combinations, many of which the
agent may never actually visit, PIG is only caculated for the known states + 1.

• Exploring different environments: Additionally, the effectiveness of PIG depends heavily on the
environment. PIG should be especially effective over a random controller when the environment con-
tains states that are difficult to get into without specific planning. For example, a rectangle environment
with a small “trapping state” like a small square cut into one of the walls could produce interesting
results for our agents. However, this would likely only work with increased memory or sensor sophis-
tication, in order to increase the chances of the agent finding the trapping state in the first place and
being able to deliberately return to it.

6 Conclusion

In conclusion, while this physical implementation of PIG did not show significant efficiency gains over a
randomly-controlled explorer, there are several significant conclusions to be drawn. First, the degree to
which the environment is hidden from the agent strongly determines the efficiency of PIG, as seen both in
this study and the one by Little & Sommer. This can be seen especially when predicted information gain is
plotted against actual information gain, the result of which indicates that the agent’s predictions are often
wrong due to its lack of knowledge about where it is in the environment. However, PIG did successfully
create a more accurate model than the prior distribution that the robot started with, and the accuracy of
predictions increased over time.

The second main conclusion to be drawn is that the structure of the internal models depends both on the
actual structure of the environment and on the limitations of the agent’s sensors and actuators. An agent
that has four corner sensors in a square configuration, and that can only turn in multiples of ninety degrees,
will always have an easier time exploring an environment with lots of orthogonal features.

Finally, we can conclude that in order to increase the utility of an information-theoretic algorithm like
PIG, we must give our agent better ways to gain information about its environment. This could take the
form of more advanced sensors, more control over the actions the agent can take, and/or increased memory.
Of these three, I think that increased memory is the most interesting and most likely to produce interesting
results without needing significant hardware changes to the robots. The problem of how computational
complexity scales with memory / state-space size is a significant one, but could potentially be overcome using
the Chinese Restaurant process. The field of information-theoretic machine learning objective functions is
an important one, and one that has interesting applications both in neuroscience and physics.
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