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Abstract

We performed systematic investigations of mean field ground states of interacting two dimensional
(2D) lattice models. Specifically, we address the effect of supercell ("cluster") size in the types of solutions
that arise, treating doping levels that are either commensurate with, or incommensurate with, the supercell
size, for interaction strengths ranging from the perturbative range to the strong interactions regime.
We consider the basic Hubbard model on a 2D square lattice, with hopping amplitude -t, providing the
kinetic energy and the on-site repulsion U (Hubbard U) providing the energy of interaction. The mean
field solutions allow us to assess global characteristics such as charge and spin order, tendencies toward
phase separation, and distribution of single particle eigenvalues (density of states [DOS]). The degree of
localization of individual eigenstates, as provided by the inverse participation ratio, provides a new and
innovating window into the character of the system.

I. Introduction

Model Hamiltonian approaches have provided
the core of research on correlated electron sys-
tems, displaying the basic phenomena and pro-
viding understanding of the fundamental pro-
cesses that are involved. In the absence of
exact solutions except for some very particular
cases, approximations are required to enable
progress. The earliest approach was "Hartree-
Fock" (HF) - a mean field approach that approx-
imates electron-electron interactions, which are
the hangup, with interaction with an average
potential (the mean field) that is determined
self-consistently to minimize the energy, or at
finite temperature the thermodynamic poten-
tial. The HF method has provided invaluable
guidance in interacting systems.

In spite of all of the increasing sophisti-
cation and elegance of state of the art meth-
ods, the mean field approach remains of great
importance and may be experiencing a resur-
gence. With simultaneous treatment of all of
the charge, spin, orbital, and lattice degrees
of freedom as well as variable electron den-

sity, there are many variables (parameters) to
manipulate, and mean field enables investiga-
tions that are not viable with more realistic but
much more time consuming methods. Mean
field studies remain an essential tool in the
theorist’s arsenal.

II. Theory Background

The tight-binding model is an approach to
the calculation of electronic band structure
using an approximate set of eigenfunctions
based upon superposition of orbitals for iso-
lated atoms located at each atomic site. The
tight binding approximation deals with the
case in which the overlap of the wave functions
is enough to require corrections to the picture
of isolated atoms, but not so much as to render
the atomic description completely irrelevant.
This model is incomplete for our needs. It
uses only kinetic energy and no potential en-
ergy. Therefore we need a more specific model.
Since I have used the name of electronic band
structure in defining the TB model here is some
information about it.
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The electronic band structure of a solid de-
scribes the ranges of energy that an electron in
the solid might or might not have. The ranges
of energy in a solid where no electron states
can exist is called a band gap or an energy gap.
In insulators and semiconductors an important
band gap is situated between the valence band
and the conduction band. The valence band
is situated below the band gap, if it is present.
The electrons here are bound to the atom, they
cannot move freely within the atomic lattice.
They are present at absolute zero temperature.
The valence band is the highest range of elec-
tron energies. The conduction band sits on top
of the band gap (if there is one). The electron
is no longer bound to the atom and is therefore
free to move as it pleases within the atomic
lattice. In insulators and conductors the levels
are respected, while in metals, the bands cross
each other.

Figure 1: The electronic band structure of a solid
There are many models used in physics, but

for our purpose, the Hubbard Model seemed
to be a suitable choice. The Hubbard model
is an approximate model used to describe the
transition between conduction and insulating
systems. It is the simplest model of interacting
particles in a lattice, with only two terms in
the Hamiltonian: a kinetic term allowing for
tunneling (hopping) of particles between sites
of the lattice and a potential term consisting of
an on-site interaction. In our case, the Hubbard
Model adds an important element, which is the
potential energy of interaction.

But when talking about these models we re-
ally need to explain something about the Mean
Field Theory. MFT is studying the behavior of
large and complex stochastic (a system whose

state is non-deterministic, random) models by
simplifying them to a simple system. When
talking about these random systems we are
referring to the electrons inside the periodic
lattice which are free to hop randomly inside
the atomic lattice.

A many body system is very hard to un-
derstand and solve exactly because there are
too many interactions happening. That is why
all this interactions are approximated by an
average, which becomes the external field. The
problem goes now from an n-body system to a
one body system, a problem that can be solved.
That doesn’t mean that the problem is simple.
There is still a part that is a little problematic.
When summing over all states, the interaction
terms in the Hamiltonian give some combina-
torics (study of finite discrete structures) prob-
lems, which are a little difficult to solve.

Since there are no exact solutions (with
a few exception) we need to use approxima-
tion methods to help in our study. The HF
method is one of these methods and has pro-
vided invaluable guidance in interacting sys-
tems.The Hartree-Fock method is an approxi-
mation method used in the determination of
the wave function and the energy of a quantum
many-body system in a stationary state (state
with a single definite energy). The Hartree
equation is the approximate solution of the
Schrodinger equation given that after comput-
ing the final field from the charge distribution,
this field must be self-consistent with the initial
field.

III. Setting up the problem

When using the Hubbard Model we have to
make sure that some assumptions are met.
The atoms are arranged in periodic patterns
over long distances and are stable for a long
time. We have used lattices that are periodic,
the 8x8, 16x16, 24x24, 32x32 and even some
64x64 lattices. We assumed that atoms have a
simple energy level the electrons can occupy,
the electrons are interacting through the on-
site Coulomb interaction, the kinetic energy is
characterized by hopping of electrons between
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atomic sites and since the atomic orbitals die
off exponentially, the electrons are allowed to
hop only to the nearest neighbor.

We set up a Hamiltonian starting from ran-
dom initial density. The Hubbard Hamiltonian
for fermions is written as:

H = −t ∑
<α,β>σ

ĉ†α,σ ĉβ,σ + U ∑
α

n̂α↑n̂α↓ (1)

where ĉβσ destroys the electron with spin σ
at site β, and ĉ†ασ creates an electron with the
same spin.

Since there can be up to 2 electrons per site
the total number of electrons in the system can
be 2N (where N is the number of sites). We
set up the system, initially, to have only one
electron per site, which is called half filling.

The hopping parameter is set to -1, which
allows the electrons to hop to neighboring sites.
For the half-filling case we are looking at there
is 1 atom for cell and 1 orbital.

IV. Results

During our research we looked at a few dif-
ferent things. We checked to see what the
lowest energy (ground state energy) looks like
in different lattices. We studied the depen-
dence on supercell (cluster) size, compared
commensurate vs incommensurate states (#of
electrons/spin ←→ # of atomic sites), we as-
sessed global characteristics like the distribu-
tion of single particle eigenvalues (density of
states), and in the end we looked at the in-
verse participation ratio (IPR) vs the energy
of the state, which may not have been done
previously.

The amix is set to 0.3 or 0.1, with a few
exceptions for u=2, where both the 24x24 lat-
tice and the 32x32 were not converging in 2500
iterations. The amix represents the percentage
of the output of the previous solution that is
mixed into the input for the new one. What
we observed was that the larger the lattice the
harder it was to find a percentage that would al-
low for convergence. Therefore for some cases
we had to use an amix of 0.6, 0.7 and even 0.8.

If for the previous lattices, 30 percent of the so-
lutions were diverging (with the best amix for
that case), when we went for a higher lattice,
40x40, we noticed that most of the solutions
were diverging. It is true that we tried only a
few cases, because due to the size of the ma-
trix (1600x1600) it was taking too long to get
solutions. For example, it took three days to
get 10 solutions for parameters, u=2, polariza-
tion=1/8. This case is also the most difficult
one. When the fraction p, of number of spins
up minus number of spins down over the total
number of spins is 1/8, it is very hard to get
results. It is a transition region from strong to
weak onsite interactions, which caused prob-
lems for us but also gave the most interesting
results. For the 24x24 and 32x32 lattices the
interval with problems was for polarization be-
tween 1/4 and 1/16, and it was getting much
larger for 40x40 lattices. For the small numbers
of runs done for 64x64 lattices, it became a real
problem to get convergent solutions.

A. Varying the interaction strength

Looking at the ground state total energy (Fig-
ure 2, first graph) it becomes clear very quickly
that for u=1, the ground state energy stays al-
most the same with changes after the fourth
decimal. The behaviour is the same for all lat-
tice sizes. What is interesting is that for polar-
izations closing on 0, there are some changes at
the third and fourth decimal for the 16x16 lat-
tice and the same changes happen in the 32x32
lattice for larger polarizations. The 24x24 and
32x32 lattices have the same ground state en-
ergy, while when closing on polarization 1, the
16x16 and 24x24 lattices have the same solution.
For u=4 (Figure 2, last graph), due to the strong
regime of the on-site energy the interactions
are localized, therefore we don’t get a global
organized picture. We do not necessarily find
the ground state energy, unless we look at the
case with only spins up, where no matter what
size of lattice we look at the energy stays the
same. For any other case the differences in
energy, in the same lattice, are varying from
0.02 to 0.06 and this fluctuation happens for
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all lattices. But when taking an average of the
energy, for all lattices the energy tends to con-
verge towards the same value. The u=2 case
(Figure 2, second graph) seems to be on the
transition line between the higher on-site inter-
actions that are localized and the lower ones
that are global. Therefore the solutions for the
ground state energy are different for different
lattice sizes, especially the 8x8 lattice. The 8x8
lattice doesn’t allow us to see the big picture.
The differences go up to the first decimal. It
seems that the larger the lattice becomes the
smaller the difference gets, where that happens
only after the fourth decimal. As in the case for
u=4, when there are only spins up, the energy
is identical for all 4 lattices.

Figure 2a: 32x32 lattices with p=1/2 and, u=1; the
x-axis represents the run number while the Y-axis
represents the total energy of that specific run

Figure 2b: 32x32 lattices with p=1/2 and u=2; the
x-axis represents the run number while the Y-axis
represents the total energy of that specific run

Figure 2c: 32x32 lattices with p=1/2 and u=3; the
x-axis represents the run number while the Y-axis
represents the total energy of that specific run

Figure 2d: 32x32 lattices with p=1/2 and u=4; the
x-axis represents the run number while the Y-axis
represents the total energy of that specific run

B. Varying the lattice size

A different way to look at the results is by
analyzing the cluster size. Due to the strong
local on-site interactions happening for u=4,
there isn’t much to see in the solution (Figure
3).There is little correlation from site to site,
the global interactions are very weak leaving
the magnetization to look just disorganized.
We get the same type of solution for any lat-
tice size and any combination of spins up and
spins down.
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Figure 3: 32x32 lattice, u=4, p=1/2; each little
square represents a site and the colors go from spin
up-dark red to spin down-dark blue

Due to the strong local interactions the so-
lution for the ground state gives either the anti-
ferromagnetic (the spins of the electrons align
in a regular pattern with the neighboring site -
one up, one down) solution or some type of a
cluster or stripes solution. For small polariza-
tions (up to p=1/16) the solution seems to be
a variation of stripes, while for larger polariza-
tion we get clusters. (Figure 4)

Figure 4a: The antiferomagnetic solution for u=1

Figure 4b: Stripped solution for small polarizations
and u=1

Figure 4c: Stripped solution for small polarizations
and u=1

Figure 4d: Cluster solution for larger polarizations
and u=1

There is an interesting result for p=1/9
which is incommensurate with the chosen lat-
tice sizes. See Fig.5. The 16x16 lattice has a
stripped solution while the 24x24 and 32x32
lattices have cluster solutions. Otherwise, all
solution are consistent.

Figure 5a: For u=1; p=1/9; lattice size 16x16
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Figure 5b: For u=1; p=1/9; lattice size 24x24

Figure 5c: For u=1; p=1/9; lattice size 32x32

Another interesting result happens for
p=1/2, where the bigger the lattice gets,
the more disorganized the solution ap-
pears.(Figure 6) There is a strong dependence
on lattice size.

Figure 6a: Polarization 1/2, u=1, 16x16 lattice

Figure 6b: Polarization 1/2, u=1, 24x24 lattice

Figure 6c: Polarization 1/2, u=1, 32x32 lattices
But the most interesting and diverse solu-

tions are seen in the transition case which is
for onsite interaction u=2. The only constant
results are that from the 8x8 lattice you can’t
conclude much, and the larger lattices tend to
give the same type of solution, whatever that
solution might be. But here it ends because,
the solutions are everything from stripes or
clusters to discs, rings, waves and other shapes
and forms with no names. A few examples of
phase separation can be seen in Figure 7

Figure 7a: Solution for u=2, lattice size 16x16
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Figure 7b: Solution for u=2, lattice size 24x24

Figure 7c: Solution for u=2, lattice size 32x32
The HF solutions allow us to assess global

characteristics like the distribution of single
particle eigenvalues. So, another way to look
at the results is by analyzing the density of
states. DOS describes the number of states per
interval of energy at each energy level that are
available to be occupied by electrons. A high
DOS at a specific energy level means that there
are many states available for occupation. Plots
of the DOS can be seen on Figure 8. On the top
image, the interactions between electrons are
not strong when the onsite energy is 1 giving
this perfect solution with the peak right in the
middle and a shift between the spin up and
down, due to imposed spin polarization. In the
right picture, due to the strong regime of the
onsite energy (u=4), the number of states per
interval of energy are organized in a symmetri-
cal picture, with a flip of the spin. The up spin
goes down on the other side of the band gap
and the down spin goes up. There can also be
seen the peaks where the density of states is at
its highest.

Figure 8: DOS for u=1 with shifted peaks due to
the diference in spins

Figure 8: DOS for u=4 with peaks for the highest
density and gaps

C. A new type of characterization

A different way to look at the results is by ana-
lyzing the solutions of the inverse participation
ratio versus the energy of states. The IPR pro-
vides a measure of the extension over sites of
the eigenstates. We did a set of runs only on
24x24 and 32x32 lattices, for onsite repulsion
u of 1, 2, and 4 and polarization 1/16, 2/16,
and 3/16. It can be seen how much the in-
teractions affect the results. Weak interactions
form a straight line(u=1), while strong inter-
action(u=4) give a visible gap. The solutions
for u=1, give an expected result. The values of
eigenenergies for every spin are close together,
the majority forming a line. When looking at
different polarizations the values form a dis-
tinctive line for bigger polarization and get a
little spread for smaller polarization. It can
also be easily seen that number of spins up
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and spins down play a role in the forming of a
gap around the point of 0 eigenenergy.

Figure 9: IPR vs energy for u=1, p=1/16

Figure 9: IPR vs energy for u=1, p=2/16

Figure 9: IPR vs energy for u=1,p=3/16
The tendency for u=2 of the values of spins

up and down is to converge towards the point
of 0 IPR near 0 eigenenergy. The graph shows
a sharper slope for higher polarization.

Figure 10a: IPR vs energy for u=2, p=1/16

Figure 10b: IPR vs energy for u=2, p=2/16

Figure 10c: IPR vs energy for u=2, p=3/16
Stronger interactions of the electrons of the

onsite energy u=4, give a totally different pic-
ture when compared to the solution of a strong
interaction. We don’t even get the curvy solu-
tion of the u=2. Here, in either side of the 0
eigenenergy forms an arrow head with a quite
a big gap in between either side, as seen in
Figure 11.
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Figure 11a: IPR vs energy for u=4, p=1/16

Figure 11b: IPR vs energy for u=4,p=2/16

Figure 11c: IPR vs energy for u=4, p=3/16

V. Conclusion

We have studied Mean Field Theory on a 2D lat-
tice to obtain some insight into how correlated
electron systems behave. The MFT helped us
analyze the results and assess global character-
istics of the system. Even though they are not
very complicated or the most realistic meth-
ods, for many properties what makes them so
valuable is the amount of variables that we can
work with and manipulate. Work like this, has
been done before, but usually only on 8x8 lat-
tices. Since we have worked with much larger
lattices (the largest being 64x64), we have been
able to see how the system changes and what
are the tendencies of those changes when work-
ing at a bigger scale. One direction would be
to work on even larger lattices, but for now
we are unable to do so, due to computational
problems. Computers are not fast enough to
give results in real time. We hope that our
results, while giving some answers that the-
oretical physicist have been looking for, will
make them investigate further and revisit sim-
ple methods that can still give insight into the
world of correlated electron systems.
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