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The present study examines the quantum entanglement in several bipartite fermion lattices, with various
Fermi surfaces and a staggered chemical potential. In ground state systems, the entanglement scales as the area
of the boundary between the two regions, and the coefficient of this line term was found to vary logarithmically
with the staggered potential. Furthermore, this relation is governed by the geometry of the Fermi surface of the
lattice, as evidenced by results in the pi-flux and anisotropic cases. In addition, the entanglement entropy of
excited state systems was found to scale as the volume of the system. When examined as a function of energy,
the entanglement entropy of the excited state systems was found to approach expected behavior only as the two
parts of the bipartite lattice become severely unequal in size.

INTRODUCTION

Quantum entanglement, a phenomenon Schrödinger re-
ferred to as “the characteristic trait of quantum mechanics”[1],
has recently been of great interest to the physics community.
With applications in computing, encryption, and communica-
tion, it is worth examining quantum entanglement not only in
two or three particle systems, but also in large lattices of en-
tangled particles. Here we find that quantum entanglement,
and the related measure of entanglement entropy, are related
to some of the most fundamental concepts in our understand-
ing of condensed matter physics.

Von Neumann entanglement entropy is a simple extension
of information entropy in bipartite lattices of entangled parti-
cles. Entropy is used as a logarithmic measure of entangle-
ment between two halves of a system. The entanglement en-
tropy of ground state systems is a subject of great interest, and
is known to scale as the “area” of the boundary between the
two regions for systems with an energy gap. This “area-law”
behavior was first discovered in the context of classical infor-
mation transfer in black hole physics [2][3], and has since ex-
tended to quantum entanglement entropy. While the Hilbert
space for a many-body system scales exponentially with the
volume of the system, rendering calculations impractical, this
counter-intuitive area-law property of the ground state allows
for calculations involving many-body systems via methods
like the density matrix renormalization group (DMRG) [4].
The present study seeks to confirm this basic area-law rela-
tion in one-, two-, and three-dimensional systems, with sev-
eral variations on the basic model. For more details concern-
ing the current study, see [5].

An interesting extension of the model is to examine a
gapped system, achieved in our model via a staggered chemi-
cal potential µs, and its behavior as the system becomes gap-
less (µs → 0). The area law line term, i.e. the coefficient
of the linear term in the expression for sV N (N), is expected
to vary logarithmically with µs for sufficiently large system
sizes and sufficiently small values of µs. In addition to these
gaps, we also examine the effect of Fermi surface geometry
on the behavior of this divergence.

Systems in excited states display instead a “volume-law”,
that is, the entropy scales instead with the volume of the sys-
tem. While this relation offers no computational benefits to
exploit, it does allow for the examination of entropy as a func-
tion of energy (i.e. the entropy density function), which is
well-understood for information entropy. We shall determine
to what extent the entanglement entropy density function cal-
culated using these exact methods agrees with the thermody-
namic entropy density function obtained from statistical me-
chanics. Agreement indicates that our lattice can be treated as
a ”particle in a heat bath”, and thus described using statistical
physics.

METHODS

Tight-Binding Model

Our model involved a bipartite square lattice of atoms with
one spinless electron either present or not present in the va-
lence shell. Because the model disregards the spin of the
electron, a maximum of one electron can occupy a lattice site
at any given time. The lattice had periodic boundary condi-
tions, and we considered the two halves such that no corner
terms were introduced into our calculation. We used the tight-
binding model Hamiltonian

H =
∑
〈i,j〉

ti,j( c
†
i cj + c†jci ) + µs

∑
i

(−1)ini. (1)

where the creation and destruction operators (c†i and ci respec-
tively) represent a particle being created or destroyed at lattice
site i. Thus the first term in Eq. 1 represents the possibility
of an electron moving between nearest neighbor lattice sites
with a coefficient ti,j called the transfer integral. The basic
model is isotropic in the transfer integral, but we also exam-
ine the anisotropic case with distinct transfer integrals in each
direction, and define q = tx

ty
. This changes the Fermi surface

of the lattice, as seen in Fig. 1. Furthermore, each atom has a
constant chemical potential µc, which does not factor into the
Hamiltonian, and the lattice includes a staggered chemical po-
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tential µs on alternating atoms, which serves to create a gap in
the energy spectrum of the lattice (see Fig.2). This staggered
chemical potential is represented by the second term in Eq. 1,
where ni is an operator equivalent to c†i ci and thus serves to
“count” the number of particles present on a particular lattice
site. See Fig. 3 for a summary of the lattice arrangement.

In addition to the above zero-flux case, we examine a pi-
flux potential in two dimensions. Here, the sign of alternating
transfer integrals are switched, as in Fig.4. This potential is
derived from Mean Field Theory models of superconductivity
and can be modeled as an extremely large magnetic field pass-
ing through the lattice [6]. The pi-flux case is fundamentally
different from the zero-flux case, as it exhibits a point Fermi
surface (see Fig. 1), and a Dirac energy spectrum (see Fig. 2).

It is necessary to work with Eq. 1 in momentum space
and exploit lattice symmetries to diagonalize the Hamiltonian.
Once diagonalized, the Hamiltonian is of the form

H =
∑
~k

[ ε−(~k)α†kαk + ε+(~k)β†kβk ] (2)

where, for a ground state system with twice as many sites
as electrons,

〈
α†kαk

〉
= 1 and

〈
β†kβk

〉
= 0. Thus the

ground state, half-filled system corresponds to the lower en-
ergy band being completely full and the upper energy band
being completely empty. For the excited state calculations,
both

〈
α†kαk

〉
and

〈
β†kβk

〉
can take values of 0 or 1, since the

upper energy band is not necessarily empty. For this case, a
program was created which assigned each of N electrons to
one of 2N possible states. In this way, for a particular pair of
(kx, ky) values, an electron could fill both, neither, or one of
the lower or upper energy states. In order to sample a large
range of system energies, it was possible to bias the assign-
ment of states such that a particular percentage of electrons
would be placed in the lower or upper energy band.

Correlation Matrix Method

We work primarily with the Von Neumann entanglement
entropy, which is defined in terms of the reduced density ma-
trix, ρA, for one part (labeled part A) of the bipartite lattice.
The reduced density matrix is easily obtained from the full
density matrix of the system by tracing out the degrees of free-
dom associated with the other part of the lattice (part B):

ρA =
B
Tr(ρ) =

B
Tr(|Ψ〉 〈Ψ|) (3)

where Ψ is the wavefunction describing the entire lattice in its
ground state. The Von Neumann entanglement entropy is then

sV N = − ln[Tr(ρA ln ρA)]. (4)

For non-interacting models, we can reformulate Eq. 4 in
terms of the eigenvalues of a correlation matrix [7], defined to
be

Ci,j =
〈
c†i cj

〉
(5)

where c†i and cj must be expressed in terms of αk, α†k, βk,
and β†k such that the matrix is scalar, real, and symmetric. The
correlation matrix can be easily diagonalized by a conversion
to tridiagonal, then diagonal form [8]. Once the eigenvalues
λi of the correlation matrix have been obtained, Eq. 4 can be
reformulated as

sV N =
∑
i

λi ln(λi) + (1− λi) ln(1− λi). (6)

In general, the full correlation matrix grows as Nd for a sys-
tem of linear size N and dimension d, making even two-
dimensional systems impractical to diagonalize for large sys-
tem sizes. However, if the broken symmetry is restricted to
one spatial direction, i.e. the lattice is split only along the x, y,
or z direction, the correlation matrix becomes block diagonal,
with each block having order N. Each block can then be di-
agonalized separately and the block eigenvalues can be used
directly in Eq. 6. The density matrix described above grows
exponentially with the system size, so it is only using the cor-
relation matrix that we may examine system sizes larger than
a chain of six atoms. However, calculations were made using
both methods in linear chains of four and six atoms to ensure
that both methods gave the same results.

RESULTS

Area Law

The area law was found to be satisfied with each ground
state system (see Fig. 5), with a line term coefficient vary-
ing with µ, according to Fig. 6. For the zero-flux one-, two-
, and three-dimensional case, the dependence on ln( tµ ) be-
comes linear as the system approaches the gapless case (small
µ). For the pi-flux case, however, we observe the line term
approaching a constant value as a result of the point Fermi
surface for this lattice.

Anisotropies

Because the anisotropy in the transfer integral changes the
Fermi surface of the lattice, it is expected that the line term
will vary not only with µ but also with the transfer integral ra-
tio q. The line terms for several different q values were plotted
against ln( tµ ), where ty = t and tx = qt. A fit was made to
the linear region of these plots (see Fig. 7). The slope (nor-
malized to q = 1) of this linear region was found to vary with
q according to the Widom Conjecture [9] (see Fig. 8), with
better fits for q < 1. It is hypothesized that for q > 1, the
system size was insufficient to give an accurate representation
of the system’s behavior for small µ.
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Excited States

As expected, the excited state entropies were found to scale
as the volume of the system. Figure 9 represents several states
near maximum entropy, where the electrons are split nearly
equally between the two energy bands. The entanglement
entropy was found to vary only slightly among randomly-
generated states with the same energy. Examined as a function
of the system energy (see Fig. 10), it was discovered that the
entanglement entropy for our basic bipartite lattice was con-
sistently less than the thermodynamic entropy calculated for
the system, both with finite and infinite system size. However,
upon reducing the ratio of the sizes of the two parts of the
lattice from our original 1:1 ratio, we found that the system
approaches agreement with the statistical prediction. Figure
11 demonstrates the effect of considering a part of the lattice
that is 1/2, 1/4, 1/5, 1/10, and 1/20 of the entire lattice. As the
examined lattice part becomes smaller in size, it can more ac-
curately be modeled as the ”particle and heat bath” necessary
for the assumptions of statistical mechanics.

CONCLUSIONS AND FURTHER WORK

We have demonstrated the area-law scaling of entanglement
entropy in one-, two-, and three-dimensional fermion lattices.
Furthermore, we have demonstrated the relationship between
this area-law line term and the staggered chemical potential
µs, which is fundamentally related to the gap in the energy
spectrum of the lattice. This relationship is also dependent on
the geometry of the Fermi Surface for a particular lattice. This
is demonstrated in both the pi-flux case, where the dependence
on µs saturates to a constant value, and in the anisotropic case,
where the dependence on µs appears to scale according to the
Widom Conjecture. In our examination of excited states, we
demonstrated a volume-law entropy scaling, as well as an en-
tropy density function that is significantly reduced from the
known thermodynamic entropy density function for equally-
sized parts of the bipartite lattice. This entanglement entropy

density function approaches the thermodynamic entropy den-
sity function as we examine a smaller and smaller part of the
bipartite lattice, integrating out the majority of the lattice.

A simple but interesting extension of our model would be
to divide our system into a regions with corners. This would
have the effect of adding a constant corner term to the en-
tropy. The behavior of this corner term can also be examined
as µs → 0. A more complicated examination of the concepts
proposed in the current study would be to calculate the entan-
glement entropies for interacting models with small system
sizes. Although this would introduce significant finite size ef-
fects, it would also give information about the difference in
the equilibrium states of non-integrable and integrable mod-
els, and how these differences affect the calculated value of
entanglement entropy.
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FIG. 1: Fermi Surface
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FIG. 2: Density of States

FIG. 3: Staggered Chemical Potential: Alternating lattice
sites are held at different potentials, transfer integrals in the x

and y directions are independent.



2

FIG. 4: Pi-Flux: Bold lines indicate a negative transfer
integral, dotted lines represent a positive transfer integral.
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FIG. 5: Area Law, using 1D lattice (top left), 2D lattice (top right), 2D lattice with Pi-Flux potential (bottom left) and 3D lattice
(bottom right)
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FIG. 6: Line terms by dimension
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FIG. 7: Line terms for different q values
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FIG. 8: Widom Conjecture
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FIG. 9: Excited States
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FIG. 10: Entanglement Entropy Density Function for 1:1
Ratio

FIG. 11: Entanglement Entropy Density Function for Various
Ratios


