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We use Mean Field Theory, 

Renormalization Group Theory and Monte Carlo 
Simulations to explore the magnetic properties of a
system of interconnected linear Ising chains. 
Interestingly in the regular and irregular cases we 
see non-zero Critical temperatures even for 
remarkably high dilutions, as well as strong 
dimensionality.

We began this project as an extension of a 
project worked on by Edward Burks, a member of 
Kai Liu’s research group. He made a copper foam 
using metallic track etching followed by chemical 
etching, that left him with a collection of 
“nanowires” in an array, that while still solid was 
made of about 98% air. Figure 1 shows pictures of 
his creations. Our job was to attempt to make a 
computer model to figure out what the magnetic 
properties of a system like this would be like, with 
our primary focus being on the question of would it
demonstrate 2-dimensional or 3-dimensional 
characteristics. 

The method we decided to use to model this 
system was to work from a basic Ising model and 
explore from there. This also gives us a number of 
tools for determining the dimensionality of the 
system as we change geometries, as there are very 
clearly defined temperatures for the magnetic phase
transitions in the Ising model in 2-d and 3-d. By 
comparing our results to the classical numbers for 2
and 3 dimensions we would be able to determine 
the dimensionality of the system.

This sets up most of our basic questions. 
Does this system have a magnetic phase transition? 
What are the critical temperatures and what shape 
does M(t) have? How do they change depending on
the dilution of the system? The most critical 
question being of course what dimension is the 
system.

To set up the system we started by making a
regular 1-d, 2-d and 3-d Ising model with periodic 
boundary conditions1, to double check our results 
against. Then we started exploring a simpler 
version of the system. Instead of randomly placing 
1-d Ising chains like pick-up-sticks, we made a 
regular grid set up and explored the phase 
transitions of these at various gap sizes.

Fig 2: Using a standard Ising model and plotting the
Magnetization Vs Temperature gives us the Critical 
Temperatures for 2-d and 3-d. In 1-d there is no 
phase transition. The critical temperatures for 2-d 
and 3-d are 2.269 J/kb and 4.51 J/kb.

Fig 3: A regular site dilute Ising model with a gap 
size of 2. Blue is spin down, Red is spin up.

Fig 1: Pictures of the metallic foam. E. Burks and K. 
Liu, private communication.



We used a number of different methods to 
determine the critical temperatures. Mean Field 
Theory provided us with an upper bound for our 
approximations, and using Renormalization Group 
Theory we were able to directly determine the 
Critical Temperature for certain lattice sizes (gap 

size=(2^n)-1).
To determine the critical temperature with 

the Monte Carlo simulations we used the Binder 
Ratio1, which is a means of finding critical points 
using the order parameter of the system, which in 
our case is magnetization. By comparing the plots 
of the binder ratios at different lattice sizes we are 
able to very accurately pinpoint the critical 
temperature.

For ease of use with the Monte Carlo 
simulations, we defined temperature in our system 
to be in units of J/kB. J is the bond strength between
nodes and kB is Boltzmann's constant. This allows 
for simplifications within our codes and graphs.

The other method to determine the critical 
temperature is through the Magnetic Susceptibility. 
When you plot the susceptibility against 
temperature, there is a peak at the critical 
temperature. The larger the lattice size you use, the 
clearer this peak becomes. However, this requires 
very large lattice sizes and is not overly precise.

Fig 4: The top graph shows the exact solutions via 
Renormalization Group Theory.

The next graph shows us the Monte Carlo 
computer solutions.

The final graph shows the Mean Field Theory 
approximation and the Onsager solution for 2 
dimensions.

Fig 5: As the lattice size increases, so does the size and definition 
of the peak.
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The next step was to begin working with
a randomly generated system where the lines are
no longer in a perfect grid. We struggled for
awhile to come up with a suitable method for
doing this. The final solution that I used was to
force the lines onto a grid. By picking a start wall
and position as well as an end wall and position I
was able to fill in a line on the grid, and by
placing these randomly until a specific density
was reached I was able to generate random
lattices for later use.

As we started working with the random 
lattices problems started to develop. The methods 
we used to set up the lattices are only effective if 
the sides of the lattice are greater than 10 and the 
density is less than ½. However, as the density 
decreases and lattice size increases this method 
becomes more and more precise. The other issue 
we ran into is that the Binder Crossings were not 
clear and contained so much noise we could not 
tell what was happening.

However, when we looked at the data for 
the Magnetic Susceptibility we found that we were
starting to see a peak in the graph. Using this we 
were able to start getting data on the random 2-d 
model.

Fig 7: A sample random lattice. Only the darker 
sites are occupied, the rest are simply there for 
visual aid.

Fig 8: Even using much larger lattices, in comparison to fig 6, 
and averaging across multiple realizations we were unable to 
clear up the data. 
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Fig 6: Using the Binder Ratio we are able to see a very 
precisely where the crossing is, which is the critical 
temperature. The different colours represent the 1 
dimensional size of the lattice. 
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Moving forward, we should be able to get 
more accurate data for 2 dimensions, varying 
density and increasing lattice sizes. From there we 
will move into three dimensions, with the long 
term goal of comparing our work to Edward 
Burks.

1. Katzgraber, H. G., (2011). Introduction to Monte Carlo 

Methods. arXiv. http://arxiv.org/pdf/0905.1629.pdf 

Fig 9: A peak has begun to appear. 
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