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Abstract

In this paper, we demonstrate how one of the fixed-boundary causal dynamical triangu-
lations simulation returns a numerical result that resembles the geometry of Lorentzian de
Sitter space, signaling a first discovery of temporally unbounded quantum gravity solution
in causal dynamical triangulations. We also discuss how we can create a causal dynamical
triangulations simulation with a mass simplex, and raise some of the issues that we are faced
with; we explain some of our latest results and future plans on creating a complete model
with a mass simplex.

1 Introduction

Quantum gravity is a theory that is expected to reconcile quantum mechanics and general
relativity. Despite strenuous efforts of many researchers, such theory has proved to be very
elusive to find, and lack of direct experimental data in the realm of quantum gravity may inspire
one to question the practicality and even the existence of such theory. Despite all, however,
quantum gravity is expected to give insight to many fundamental questions related to black
hole’s singularity and event horizons, cosmological beginning, information paradox, and more.
Its existence is theoretically expected and search for the theory of quantum gravity is truly at
the culmination of human endeavor to understand the workings of the universe [8].

One of the difficulties of quantum gravity comes from the breakdown of perturbative theory
at high energy; causal dynamical triangulations (CDT) is a nonperturbative formulation of
quantum gravity which uses Wilsonian approach of adjusting bare coupling constants to arrive
at a meaningful results [2].

Two things that is expected from any successful theory of quantum gravity are: 1) It has to
reproduce any of the experimentally verified semi-classical results at an appropriate limits and
2) It must produce novel quantum mechanical phenomena (or else, there is no reason to consider
it). CDT has so far proved to satisfy both of these vital categories.

In this paper, section 2 will discuss basic formalism of CDT, section 3 will discuss some of
the important previous results coming from CDT, section 4 will discuss possible discovery of
temporally unbounded quantum spacetime geometry in CDT, and section 5 will discuss CDT
solution with symmetric mass.
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(a) Different spacetime histories with common
boundary geometry.

(b) One particular spacetime history with a fixed
boundary geometry.

Figure 2.1: Evaluation of path integral involves summing over all spacetime histories with com-
mon boundary geometry. Images by J. Miller

2 Basics of Causal Dynamical Triangulations

2.1 Path Integration Approach

Path integral quantization scheme uses Lagrangian, as oppose to Hamiltonian as in canonical
quantization scheme. Using the appropriate Lagrangian related to the dynamical variable one is
quantizing, one can compute actions for various paths with common initial and final boundary
conditions of the dynamical variable. For instance, if we are quantizing the path of classical
particle with initial point(t0, x0) and final point(t1, x1), we must evaluate the path integral1,

P (x0(t0), x1(t1)) =

∫ x1

x0

[Dx(t)]eiS[x(t)]/~ (1)

where
∫ x1
x0

[Dx(t)] is a symbolic way of saying integrate over all the paths connecting x0 and
x1 at t0 and t1, respectively. To quantize gravity, we take the spacetime metric, g, to be the
dynamical variable which we are quantizing. If we have manifold M , the path integral would
be defined as,

P (γ) =

∫
g|∂M =γ

[Dg]eiS[g] (2)

where ∂M represents the boundary of the manifold M , and γ and g represent metric ten-
sors of the ∂M and M , respectively.2 Also, S[g] includes Einstein-Hilbert action, SEH [g] =

1
16πG

∫
M d(d+1)√−g(R−2Λ) where R is the Ricci scalar and Λ is the cosmological constant, and

Gibbons-Hawking-York boundary term, SGHY [g] = 1
8πG

∫
∂M ddy

√
|γ|K where γ is the determi-

nant of the induced metric on the boundary ∂M and K is the extrinsic curvature of the boundary

1Unlike in a classical theory, what we get is not a true physical path that particle takes, but rather a transition
amplitude.

2we integrate over only physically distinct histories, i.e. distinct g upto diffeomorphism
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∂M . However, evaluating this integral with all possible continuous spacetime histories with ap-
propriate boundary conditions is hopelessly difficult and the integral is also divergent [8]. To
resolve this issue, we discretize spacetime by coordinate-independent Regge Calculus represen-
tation [6]. Regge Calculus representation discretizes spacetime by introducing UV-cutoff length
‘a’, thus resolving the issue of divergence. Regge’s formulation uses triangulation technique of
the manifold by simplices. Such triangulations create piecewise linear geometries of spacetime
where curvatures are concentrated in (n− 2)-dimensional simplices of the (n)-dimensional man-
ifold being triangulated, and edge lengths and number of simplices used for triangulations can
be appropriately adjusted to gain different levels of approximation of the manifold.

The (2) now becomes a discrete sum,

P [∂T ] =
∑
T

1

µ(T )
eiS

(R)[T ] (3)

where sum is over all piecewise linear geometries by triangulation, T , with common boundary
geometry, ∂T . Also, µ(T ) is the order of the automorphism group of the triangulation T . One
might naively expect to consider all the Lorentzian triangulation with appropriate boundary
conditions, however, the complex weight of the sum makes numerical evaluation of the sum
difficult. Thus, we want to somehow turn this complex weight to a real weight, which can be
done using a Wick rotation to Euclidean space. This turns the path integral sum into a partition
function,

Z[∂T ] =
∑
T

1

µ(T )
e−S

(E)[T ] (4)

with familiar Boltzmann weight and partition function from statistical physics. Therefore, we
can intuitively think of geometry taking certain triangulation with probability e−S[T ].3 However,
not any Lorentzian triangulation can be Wick rotated to Euclidean triangulation in general. It
was proposed by Ambjørn and Loll to consider only the Lorentzian triangulation with well-
defined causal structures, which has a well defined Wick rotation.4

2.2 Causal Structures

A Lorentzian triangulation with causal structure is simply geometries with time foliations, which
means (d+1)-dimensional manifold can be represented by M = I×Σ, where Σ is (d)-dimensional
spacelike hypersurface and I represent proper time interval.5 The most common choice of Σ for
CDT is Sd−1. S2 can be triangulated, for instance, by patching four triangles (which is minimum
number of triangles needed to triangulate S2) along its faces as figure 2.2 shows. In general,
(n)-dimensional manifold is triangulated by (n)-dimensional simplices. In CDT, we initialize
the simulation with minimal triangulation of each spacelike hypersurface (or time slice) with
(d)-dimensional simplices. Then, adjacent time slices are connected by timelike edges to form
(d+ 1)-dimensional simplices and complete triangulation of the manifold M .

3This is convenient way to imagine which triangulations are most important in evaluating the partition sum
and it matches our intuition from statistical physics; however, this is not true in the sence of path integral since
a single path is not a quantum observable.

4This proposal is not just a blind proposal to make the evaluation of the sum (4) possible. Before CDT, there
was Euclidean dynamical triangulations, which attempted evaluating (4) by considering all Euclidean piecewise
linear geometries, which ended up giving crumpled phase and branched polymer phase, but no phase with extended
geometries expected from semiclassical limit. Ambjørn and Loll proposed causal structure as the solution to this
issue.

5This does not mean we are making a gauge choice, since Regge Calculus representation does not have a
coordinate to begin with.
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Figure 2.2: A minimal triangulation of a 2-
sphere. Image from [7]. Figure 2.3: A time foliation of spacetime. Im-

age from [16].

All the links (2-dimensional simplex) in the spacelike hypersurface are spacelike with its
squared norm a2, and the timelike links that connect adjacent time slices have squared norm
−αa2 with α > 0.

2.3 Building Blocks

When we triangulate the (d + 1)-dimensional manifold M , we get different flavors of (d + 1)-
dimensional simplices. Different types of simplices are labeled by ordered pair (n0, n1) where
n0 and n1 represent number of vertices of the simplex in lower and upper time slices with
n0 + n1 = d + 2. Therefore, we have (d + 2 − n, n) types of simplices where n = 1, ..., d + 1.6

Also, (d + 2 − n, n) and (n, d + 2 − n) are just inverted version of each other. For instance,
(3 + 1)-spacetime have (4,1), (1,4), (3,2), and (2,3) simplices.

2.4 Pachner Moves

To move through the space of piecewise linear geometries, we have to have a way of going
from one triangulation to another. Pachner move changes a given triangulation to another
triangulation by changing a configuration of simplicial complex it acts on. (a, b)- pachner move
acts on ‘a’ (d+ 1)-dimensional simplices to produce ‘b’ (d+ 1)-dimensional simplices. Although
it is not rigorously proven for (3+1) case, these moves are assumed to satisfy ergodicity theorem,
which is essential for monte carlo algorithms, the numerical algorithm we use in simulation, to
be valid; therefore, pachner moves are also known as ergodic moves. The figure 2.4 shows the
moves in (3 + 1) case, which has (2,8), (8,2), (4,6), (6,4), (2,4) version 1, (2,4) version 2, (3,3)
version 1, and (3,3) version 2 moves. For details of how these moves change the configurations of
simplices, refer to [7][2][3]. Regge himself envisioned getting different triangulations by adjusting
the edge lengths, however, we rather fix these edge length and arrive at different triangulations by
changing the connectivity information (number of different types of simplicies and subsimplices).

6Since there cannot be (d+ 1)-dimensional spacelike simplex, n 6= 0 and d+ 2
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Figure 2.4: Pachner Moves in (3 + 1)-dimensions. Image from [2].

2.5 Metropolis Algorithm

Although there are much more simulation details to be explained, simply put, to generate
different triangulations, a simplex and a pachner move is picked out randomly. If making the
chosen random move on the chosen random simplex does not violate any constraints, the move
might be carried out. To determine whether a certain move is carried out or not, we use
metropolis algorithm (as it was pointed out earlier, we can think of each triangulation having a
Boltzman probabilistic weight associated with it),

P (T1 → T2) =

{
e−∆SE if e−∆SE > 0

1 if e−∆SE ≤ 0
(5)

where P (Ti → Tj) represents the transition probability of going from triangulation Ti to Tj and
∆SE represents the change in the (Euclidean) action values. Thus, we always accept the pachner
move if the new triangulation has a higher probability of occurring than the old triangulation. If
the new triangulation has a lower probability of occuring than the old triangulation, we accept
the pachner move with the probability e−∆SE . Therefore, it becomes necessary to evaluate
the action in discrete setting. This implies we have to find a discrete representation of S[g] =
SEH + SGHY into S(R)[T ], and then take Wick rotation of it to Euclidean action.

Regge himself demonstrated that for a triangulation T , Einstein-Hilbert action assumes the
form

S
(R)
EH [T ] =

1

8πG

∑
h∈T

Vhδh −
Λ

8πG

∑
s∈T

Vs (6)
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where h represents the (d − 1)-dimensional hinge where curvature is concentrated with deficit
angle δh

7 and s represents the (d+ 1)-dimensional simplex which means the second sum is just
the volume of spacetime8, and Hartle and Sorkin demonstrated [5] that Gibbons-Hawking-York
boundary term in Regge Calculus assumes the form

S
(R)
GHY [T ] =

1

8πG

∑
h∈∂T

Vhψh (7)

where h represents the (d− 1)-dimensional hinge in the boundary ∂T with deficit angle ψh.9

We now have to turn these sum into the framework of CDT which uses connectivity. We
will just state the results without proofs and refer readers to [2][3][8][11] for the complete proofs
of these results ((2 + 1) case),

S
(R)
E =

ia

8πG
[
2π

i
(NSL

1 −NSL
1 (Ti)−NSL

1 (Tf ))− 1

i
θ

(2,2)
SL (2N

(2,2)
3 −N (2,2)

3↑ (Ti)−N (2,2)
3↓ (Tf ))

− 1

i
θ

(1,3)
SL (4NSL

1 − 2NSL
1 (Ti)− 2NSL

1 (Tf ))− 2πi
√
−αNTL

1 + 4i
√
−αθ(2,2)

TL N
(2,2)
3

+ 3i
√
−αθ(1,3)

TL N
(1,3)
3 + 3i

√
−αθ(3,1)

TL N
(3,1)
3 + (

2π

i
NSL

1 (Ti)−
4

i
θ

(3,1)
SL NSL

1 (Ti)−
1

i
θ

(2,2)
SL N

(2,2)
3↑ (Ti)

− 1

i
θ

(2,2)
SL N

(2,2)
3↓ (Tf ))] +

iΛ

8πG
[V

(2,2)
3 N

(2,2)
3 + V

(1,3)
3 N

(1,3)
3 + V

(3,1)
3 N

(3,1)
3 ]

(8)
where θ, N , and V denote Euclidean dihedral angles, number of simplices, and Euclidean volumes
of appropriate type of simplicies referred.

3 Results from Causal Dynamical Triangulations

As pointed out in the introduction, CDT has results showing both appropriate semi-classical
limit and novel quantum phenomena. Although an individual spacetime history is not a quantum
observable, expectation value of the spacetime history of the ensemble and the fluctuations
around the expectation are quantum observables. These observables provide a way of exploring
semi-classical limit and novel quantum phenomenon.

3.1 Classical Extended Geometry

As it was pointed out briefly, CDT takes Wilsonian approach of adjusting bare constants, k0(=√
3a2

8G ) and ∆ (which is a constant that measures the asymmetry between the timelike edge length
and spacelike edge length), to arrive at a meaningful results. Just like some statistical system,
this adjustment of bare constant values give phase structures, where phase transition occurs at
some critical value of the constants. When bare constants are appropriately tuned, we arrive at
a very special phase C; in (2+1) case with each of time slices being topologically S2, when initial
and final slices have minimal number of triangles required to triangulate S2, namely 4, we get

7Deficit angle δh gives a measure of failure of summation of angles around a hinge h to be 2π, namely
2π −

∑
t3h

θ(t, h) where θ(t, h) is the dihedral angle of a (d + 1)-dimensional simplex around h. This makes sense

since we usually think of curvature by parallel transporting a vector around a loop, which does not come back to
a same vector if there is a curvature.

8Note that Λ can be viewed as a Lagrange Multiplier for fixed spacetime volume.
9Since you cannot make a complete loop around the hinge to come back to a same point at the boundary, the

deficit angle here is a measure of failure of summation of angles going from one spacelike face to another spacelike
face to be π.

6



Figure 3.1: Phase structure in (3 + 1)-
dimensions.

Figure 3.2: Curvefit for Euclidean de Sitter
space.

an expectation of spacetime history that resembles a Wick rotated classical General Relativity’s
solution, Euclidean de Sitter space.

Although such phase C exists in both (2 + 1) and (3 + 1), we continue to fix our attention
to (2 + 1).10 To successfully demonstrate that numerical results resemble the classical solution,
we have to discretize the volume profile of the continuous solution. The metric needs to be in
‘proper-time’ form for the comparison to be made. That is, we turn V2(t), a 2-volume function
over proper-time ‘t’ into N SL

2 (τ), which is a discretization form of V2(t) that will be compared
with NSL

2 (τ), number of (2)-dimensional simplices at a time slice ‘τ ’.
A very similar procedure will be used for a derivation for Lorentzian de Sitter volume profile

in section 4, therefore we state the result of discretization for Euclidean de Sitter volume profile
without proofs,

N SL
2 (τ) =

2

π

〈N (1,3)
3 〉

s̃0〈N (1,3)
3 〉1/3

cos2(
τ

s̃0〈N (1,3)
3 〉1/3

) Euclidean de Sitter (9)

where 〈N (1,3)
3 〉 represents the ensemble average of the number of type (1, 3) 3-simplices and s̃0

represents a parameter to fit numerical result. Figure 3.2 shows how good the fit of the numerical
result by equation (9) is.

3.2 Spectral Dimension

Spectral dimension is a way of measuring dimensions at a different scales. The novel quantum
mechanical phenomena CDT provides in this area is quite stunning and readers are highly
recommended to read more thorough discussions on the topic [2][3][7][8]. When we probe the
dimension of (3 + 1)-manifold, classically we obviously expect dimension measurement of the
manifold to return 4. However, when we measure the dimension of the expectation value of the
spacetime history, we get a dimensional reduction in a smaller scale, and it approaches 4 as we
probe larger and larger scale.

10Also, simulations for fixed boundary conditions have only been completed for (2 + 1). (3 + 1) simulations use
periodic boundary condition in which initial and final slices are identified.
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Figure 3.3: Spectral dimension of (3 + 1) simulation, which approaches 4 as the scale we probe
gets larger and larger. The dimensional reduction that happens for some of the curves at a
larger scale is due to the finite size of the simulation (as a proof, we see that when we increase
the size of the simulation, the dimensional reduction at a larger scale disappears). Image from
[2].

4 Lorentzian de Sitter Solution

Throughout this section, we will be discussing in (2 + 1) frame. As we discussed earlier, when
we use minimal number of triangles to triangulate initial and final slices, the volume profile
of the simulation closely resembles that of the Euclidean de Sitter solution. However, when we
sufficiently increase the number of boundary triangles keeping the total number of 3-dimensional
simplices and time slices fixed, we get a volume profile of the simulation that closely resembles
that of Lorentzian de Sitter solution.

4.1 Discretizing the Continuous Solution

To test our hypothesis that numerical results matches the volume profile of Lorentzian de Sitter
space, we need to discretize the classical solution as previously discussed in the case of Euclidean
de Sitter space.

We set out to prove the following discretization result.

N SL
2 (τ) =

2〈N (3,1)
3 〉cosh2( τ

s̃0〈N(3,1)
3 〉1/3

)

s̃0〈N (3,1)
3 〉1/3(sinh( S

s̃0〈N(3,1)
3 〉1/3

) + S

s̃0〈N(3,1)
3 〉1/3

)
Lorentzian de Sitter (10)

Proof. To begin the proof, we write the metric of Lorentzian de Sitter space in proper-time
form, ds2 = −gttdt2 + l2dscosh2(

√
−gttt/lds)dΩ2

2, where lds represents de Sitter length and dΩ2
2 =

dθ2 + sin2θdφ2.
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Lorentzian de Sitter space has a infinite spacetime volume, however, our numerical simulation
has fixed spacetime volume. Therefore, we restrict the limits of integration to time interval length
‘T ’:

V3 =

∫ T
2

−T
2

∫ 2π

0

∫ π

−π

√
gdθdφdt

= 4πl2ds

∫ T
2

−T
2

√
−gttcosh2(

√
−gttt
lds

)dt

= 2πl2ds

∫ T
2

−T
2

√
−gtt(cosh(

2
√
−gttt
lds

) + 1)dt

= 2πl2ds
√
−gtt(

lds√
−gtt

sinh(

√
−gttT
lds

) + T )

Now we express the 2-volume in terms of 3-volume for given time coordinate value t.

V2 = 4πl2dscosh2(

√
−gttt
lds

)

=
2V3cosh2(

√
−gttt
lds

)
√
−gtt( lds√

−gtt sinh(
√
−gttT
lds

) + T )

Now, we shift our attention to discrete case. We first note that NSL
2 = (N

(1,3)
3 + N

(3,1)
3 )/2,

since any 2-spacelike simplex is part of one (3, 1)-simplex and one (1, 3)-simplex. Also, N3 =

N
(1,3)
3 + N

(3,1)
3 + N

(2,2)
3 , which just means total number of 3-simplices is sum of total number

of 3-simplices of each kind. Thus, we get the expression, N3 = 2(1 + ξ)
M∑
τ=1

NSL
2 (τ) where M

represents number of time slices, NSL
2 (τ) represents total number of 2-spacelike simplices on the

timeslice τ and ξ = N
(2,2)
3 /(N

(1,3)
3 +N

(3,1)
3 ).

To relate discrete and continuous case, we have to take continuum limit by taking the lattice
spacing a → 0 and total number of 3-simplices N3 → ∞ while a3N3 =constant. In particular,
we expect the condition

V3 = C3a
3N3, (11)

where C3 is the effective discrete spacetime 3-volume of a 3-simplex. Then, if we take a p-

dimensional continuous quantity, we expect it to scale like V
p/3

3 /N
p/3
3 . For instance, t ∝ τa ∝

τV
1/3

3 /N
1/3
3 .

When we use (11), we get

V3 =

∫
dt
√
gttV2(t) = 2C3a

3(1 + ξ)
M∑
τ=1

NSL
2 (τ)

√
gttV2(t) = 2C3a

3(1 + ξ)NSL
2 (τ)

NSL
2 (τ) =

dtV3cosh2(
√
−gtt
lds

t)

( lds√
−gtt sinh(

√
−gttT
lds

) + T )

1

C3a3(1 + ξ)

=
dtN3cosh2(

√
−gtt
lds

t)

( lds√
−gtt sinh(

√
−gttT
lds

) + T )

1

(1 + ξ)
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We then use ∆τ/N
1/3
3 = dt/V

1/3
3 , τ/N

1/3
3 = t/V

1/3
3 , and S/N

1/3
3 = T/V

1/3
3 where S is the

discrete quantity analog to T .11 Since ∆τ = 1,

NSL
2 (τ) =

V
1/3

3 N3cosh2(
√
−gttV 1/3

3

N
1/3
3 lds

τ)

N
1/3
3 ( lds√

−gtt sinh(
√
−gttV 1/3

3 S

N
1/3
3 lds

) +
V

1/3
3

N
1/3
3

S)

1

(1 + ξ)

=
N3cosh2( τ

s0N
1/3
3

)

(N
1/3
3 s0sinh( S

s0N
1/3
3

) + S)

1

(1 + ξ)

where 1/s0 = V
1/3

3

√
−gtt/lds. Lastly, we modify our parameter to s̃0 = s0(2(1 + ξ))1/3, which

gives

NSL
2 (τ) =

2N
(3,1)
3 cosh2( τ

s̃0(N
(3,1)
3 )1/3

)

s̃0(N
(3,1)
3 )1/3(sinh( S

s̃0(N
(3,1)
3 )1/3

) + S

s̃0(N
(3,1)
3 )1/3

)

Since we fit using 〈NSL
2 (τ)〉, we arrive at the equation,

N SL
2 (τ) =

2〈N (3,1)
3 〉cosh2( τ

s̃0〈N(3,1)
3 〉1/3

)

s̃0〈N (3,1)
3 〉1/3(sinh( S

s̃0〈N(3,1)
3 〉1/3

) + S

s̃0〈N(3,1)
3 〉1/3

)

5 CDT with Mass

Due to the lack of local degrees of freedom in (2 + 1), we want to find a way to model of the
universe with mass in (3 + 1) framework.

Another way to test semi-classical limit in CDT is to create a setting with localized mass
(energy). For instance, we can create a setting where two different masses are separated by a
fixed distance to see whether it respects Newtonian limits (In General Relativity, such setting
creates a strut that has a force that approaches appropriate Newtonian force)[10]. Our attempt
is first to create a single spherical mass, which may give a volume profile that resembles that of
Wick rotated Schwarzschild de Sitter space. This will also be a test of the classical limit since
such solution has many classical applications, such as behavior of light bending around the sun.

5.1 Epp Quasilocal Energy

In General Relativity, physical observables are nonlocal in spacetime, and this includes energy.
The best we could do is compute a ‘quasilocal energy’, an energy that is defined at an extended
but finite region of spacetime. There are many different perscriptions of quasilocal energy, but
we use Epp quasilocal energy, which is covariant. For the discussion of how Epp quasilocal
energy behaves correctly not only in stationary but non-stationary spacetime, refer to [12].

11Since T represents time interval length in continuum case, S represents number of thick slices (number of
slices bounded by two timeslices), which is M − 1.
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Figure 4.1: A curve fit of numerical simulation with 600 boundary triangles for initial and final
slices and 29 timeslices using equation (10). The chi-squared per degree of freedom χ2

pdf was
86.67.

Figure 5.1: If we wish to compute the quasilocal energy of the region R, we consider the extrinsic
curvature of its boundary Ω embedded in the spacelike hypersurface Σ and timelike hypersurface
B, which is formed by Ω’s time evolution. Image from [12].
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Figure 5.2: A spacelike edge (red) is contained by two (3, 1)-simplices and two (1, 3)-simplices.
There can be as many future or past-directed (2, 2)-simplices associated with the edge as the
figure shows.

Take a 4-dimensional manifold M diffeomorphic to R×Σ, where Σ is spacelike 3-dimensional
hypersurface. Thus Σt represents the leave at ‘t’ of the foliation of M .

Say we wish to compute the quasilocal energy of the finite region R in the hypersurface.
The 2-dimensional boundary ∂R (which we label Ω) has two independent embeddings into 3-
dimensions, namely its embedding on spacelike hypersurface Σ, and its embedding on timelike
hypersurface B, the time evolution of the Ω (you move points of Ω along its integral curve defined
by tµ = ∂fµ/∂t where f is the diffeomorphism f : R × Σ → M ). To compute Epp quasilocal
energy, we must compute 1

8πG

∫
Ω d

2x
√
|σ|k and 1

8πG

∫
Ω d

2x
√
|σ|l where σ is the induced metric

on Ω and k and l represent the trace of extrinsic curvature with respect to embedding on Σ and
B, respectively.

Now, we imagine how the situation applies in CDT framework. We may want to localize
some amount of quasilocal energy in few simplices (say one); we will call this simplex our mass
simplex, which we will identically define on every timeslices. We then compute the extrinsic
curvature of the mass simplex, which as we will demonstrate involve summing angles around
hinges on the mass simplex. Therefore, if we wish to keep the quasilocal energy of the mass
simplex fixed throughout the simulation, it involves understanding which neighboring simplices
are important in computing the mass simplex’s extrinsic curvatures and fixing them throughout
the simulation. Some of these fixed neighboring simplices will belong to spacelike hypersurface
analogous to Σ above and others will belong to timelike hypersurface analogous to B above.

5.2 Extrinsic Curvature Terms

1
8πG

∫
Ω d

2x
√
|σ|k and 1

8πG

∫
Ω d

2x
√
|σ|l terms we need in order to compute Epp quasilocal en-

ergy are not in a discrete form that we can use in CDT framework. As we pointed out ear-
lier in (7), Hartle and Sorkin derived the Gibbons-Hawking-York boundary term, SGHY [g] =

1
8πG

∫
∂M ddy

√
|γ|K, in Regge Calculus language. Although the expression is derived for the

boundary action terms, we note that Gibbons-Hawking-York boundary term looks almost iden-
tical to the terms that we need to compute for quasilocal energy.12

12However, since the hinges around mass simplex that we go around are not in the boundary, unlike the deficit
angle in (7), our deficit angle here is the measure of failure of summation of angles around a hinge h to be 2π.
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Based on the Wick rotated version of (7), we have

1

8πG

∫
Ω
d2x

√
|σ|k =

1

8πG

∑
h∈Ω

a

i
(2π − θ3

SLN
SL
3 (h)) (12)

where a is the length of the spacelike edge of the mass simplex, θ3
SL is the spacelike dihedral

angles13 of the spacelike 3-dimensional simplex attached to the hinge of the mass simplex, and
NSL

3 (h) is the number of spacelike 3-dimensioanl simplices attached to the hinge ‘h’. Also,
1

8πG

∫
Ω d

2x
√
|σ|l = 1

8πG

∑
h∈Ω

a
i (2π− 2θ

(1,3)
SL − 2θ

(3,1)
SL − θ

(2,2)
SL N

(2,2)
3↓ (h)− θ(2,2)

SL N
(2,2)
3↑ (h)) where θ

(a,b)
SL

represents the spacelike dihedral angle of the timelike (a, b) 3-dimensional simplex. The N
(2,2)
3↑ (h)

and N
(2,2)
3↓ (h) are the number of future and past-directed (2, 2) simplices attached to the hinge

‘h’, respectively. Any spacelike edge is contained by two (3, 1)-simplex and two (1, 3)-simplex

and it can have as many (2, 2) simplices in between as the figure 5.2 shows. Since θ
(3,1)
SL = θ

(1,3)
SL

and we can also just write N
(2,2)
3 (h) = N

(2,2)
3↑ (h) +N

(2,2)
3↓ (h), the equation simplifies to

1

8πG

∫
Ω
d2x

√
|σ|l =

1

8πG

∑
h∈Ω

a

i
(2π − 4θ

(3,1)
SL − θ(2,2)

SL N
(2,2)
3 (h)). (13)

5.3 Integral Curve

Still the nagging question remains, which neighboring simplices do we need to fix? The spacelike
3-simplices that contains one of the edge of the mass simplex is pretty simple to identify, since our
simulation already has a built in foliation with 3-dimensional spacelike hypersurfaces. However,
the integral curve of the mass simplex, 3-dimensional timelike manifold is not built into the
simulation a priori. Therefore, how do we find a right definition of the integral curve of the
mass simplex? We are currently testing different definitions of the integral curve, but there are
several guidelines that we are using to possibly come up with the right definition of the integral
curve, which we will deal with now.14

5.3.1 Consistence with Pachner Moves

Pachner moves change triangulation of the manifold, which may remove simplices that previously
existed and introduce simplices that previously did not exist. Throughout the simulation, we
fix the simplices that are part of integral curve, therefore there is no fear of losing simplices that
are part of the integral curve according to the definition we use. However, pachner move may
create new simplices that are part of the integral curve according to the definition of the integral
curve we use. We say such definition of the integral curve is not consistent with pachner moves,
which we may expect from the correct definition of the integral curve.

There are several definitions of integral curves that are not consistent with pachner moves.
For instance, if we take timelike 3-simplices (which has its verticies in two slices) that have at
least one edge that is part of the mass simplex and have at least one point in each slice being
part of mass simplex to form the integral curve, there is a pachner move that will create new
simplex that falls into this definition of this integral curve.

13An angle formed between two faces of the 3-dimensional simplex around the spacelike edge.
14We cannot expect these criterias to absolutely vital, we can merely use them as guidlines to coming with the

right definition of the integral curve.
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5.3.2 Topology of the Integral Curve

Since the surface of a single simplex has a topology of S2, and (3+1) uses the perodic boundary
condition which gives S1 topology for time, we may expect the integral curve to have the topology
of S2×S1, which is closed. Unfortunately, none of the several integral curve definitions that we
considered were topologically closed.

5.3.3 Behavior at the Singularity

Since integral curve is just the time evolution of the surface of the mass simplex, we may try to
arrive at the correct definition by brute force. We may imagine timelike vectors on each points of
the mass simplex emanating from its face; however, if we evolve each of these points on the mass
simplex, most of them meets timelike surface, which has a curvature concentrated to it.15 The
question is, how does the integral curve behave upon encountering such singularity? Exploring
the answer to this question may help one to arrive at the correct definition of the integral curve
to use.

5.4 Building a Mass Model

One of the definition of the integral curve that we think may be the correct definition, which is
also consistent with pachner moves, is taking timelike simplices that have at least one edge that
belongs to the mass simplex. With such definition of the integral curve, how do we go about
building a model with the mass simplex and all the neighboring fixed simplices identified? This
is not so simple. For instance, let us consider the minimal triangulation of the timeslice, which
has five 3-dimensional siimplices, which we label its vertices by integers. Since we can repeat
our mass building procedures between any two slices, it is sufficient to consider only two slices.
On the lower slice then, we have the 3-simplices labeled by (1 2 3 4), (1 2 3 5), (1 2 4 5), (1 3 4
5), and (2 3 4 5). On the upper slice, we have (1′ 2′ 3′ 4′), (1′ 2′ 3′ 5′), (1′ 2′ 4′ 5′), (1′ 3′ 4′ 5′),
and (2′ 3′ 4′ 5′). These are then connected by timelike edges to form 4-dimensional simplices,
namely, (1 2 3 4 | 1′), (1 2 3 5 | 2′), (1 2 4 5 | 3′), (1 3 4 5 | 4′), (2 3 4 5 | 5′), (1 | 1′ 2′ 3′ 4′),
(2 | 1′ 2′ 3′ 5′), (3 | 1′ 2′ 4′ 5′), (4 | 1′ 3′ 4′ 5′), (5 | 2′ 3′ 4′ 5′), (1 2 3 | 1′ 2′), (1 2 4 | 1′ 3′), (1
3 4 | 1′ 4′), (2 3 4 | 1′ 5′), (1 2 5 | 2′ 3′), (1 3 5 | 2′ 4′), (2 3 5 | 2′ 5′), (1 4 5 | 3′ 4′), (2 4 5 | 3′

5′), (3 4 5 | 4′ 5′), (1 2 | 1′ 2′ 3′), (1 3 | 1′ 2′ 4′), (1 4 | 1′ 3′ 4′), (1 5 | 2′ 3′ 4′), (2 3 | 1′ 2′ 5′), (2
4 | 1′ 3′ 5′), (2 5 | 2′ 3′ 5′), (3 4 | 1′ 4′ 5′), (3 5 | 2′ 4′ 5′), and (4 5 | 3′ 4′ 5′), where ‘|’ denotes
the separation of the vertices in the lower and upper slices (and yes, this is only the minimum
triangulation).

Now, to see what 3-dimensional timelike simplices we have (and we will not list them all
here), we need to take a 4-dimensional simplex and look at its 3-dimensional subsimplices just
by taking 4 of its vertices. For instance, (1 2 3 4 | 1′) has following 3-dimensional subsimplices,
of which only one of them are spacelike: (1 2 3 4), (1 2 3 | 1′), (1 2 4 | 1′), (1 3 4 | 1′), (2 3 4 |
1′). Since a pachner move changes subsimplices around, if a 4-dimensional simplex contains one
of the fixed 3-dimensional subsimplex, we have to fix 4-dimensional simplex that contains the
fixed 3-dimensional subsimplex. Now, let us without loss of generality, assume that (1 2 3 4) is
our mass simplex. If we use the integral curve definition we just introduced, every single one of
our 4-dimensional simplices become fixed, therefore simulation is doomed. Therefore, we need
to implement few initial moves to have more than minimal triangulation of the timeslice before
assigning mass simplex, such that not every simplices are frozen.

15Recall that in (n)-dimensional manifold, curvatures are concentrated in (n− 2)-dimensional subsimplices
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Figure 5.3: Mass simulation with total number of 4-simplices and timeslices as 40464 and 37,
respectively. We used the integral curve definition introduced in Section 5.4, and this particular
model has around 180 3-simplices fixed in each slices.

It is reasonable to expect the correct mass model should be able to make any type of the
pachner moves. We have developed a Python program that tracks all the simplices information
while making a desired pachner move on a desired simplicial complex. We were able to create a
symmetrical mass model under the integral definition we specified in the beginning, such that
there are enough free simplices to allow every type of the pachner moves. We also developed an
algorithm to create a mass model to allow mass to have an arbitrarily high quasilocal energy. The
program also tests the topology information of the integral curve, and facilitates the investigation
of the validity of the different definitions of the integral curve. The model that we created has
a very long list of simplices, which we will refrain from writing down on this paper.

5.5 Results and Outlooks

We have modified the (3 + 1) CDT Simulation code written in Common LISP by R. Kommu to
allow specified simplices to be fixed throughout the simulation to test our mass model. According
to the paper [9], the point-like mass (localized mass within a single simplex like the one we
created) should give the volume profile of Euclidean Schwarzschild de Sitter space. As we
always have in other cases, the volume profile must be derived using proper-time metric form.
The problem is, however, in Euclidean Schwarzschild de Sitter space, proper-time coordinate
does not cover the entire manifold. Therefore, we excise the mass region, and focus our attention
in the exterior vacuum region. However, if the mass becomes too large, the caustic region (which
lies within the mass region otherwise) extend to the exterior vacuum region. Therefore, the paper
argues that mass has an upperbound, and the low mass allows the volume profile of Euclidean
Schwarzschild de Sitter to be seen as a perturbation of the volume profile of Euclidean de Sitter
space. Our preliminary result of the simulation with the integral curve definition introduced in
the previous subsection has a volume profile that definitely resembles that of Euclidean de Sitter
space. We are currently testing other definitions of the integral curve to see whether we really

15



landed on the right integral curve definition.
Eventually, we hope that we can also create a situation with two mass model to further test

our Newtonian limits as discussed earlier in the section. Another project one can work on is
constructing the phase structure with mass simplex.
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