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Abstract

An interaction between dark matter and dark energy is introduced and its impact on
cosmic microwave background anisotropy is considered. Using a modified version of
the CLASS Boltzmann integrator, we reproduce the results of a previous study. We
discuss further modifications that must be made to CLASS and prepare to perform a
fit to Planck data for each of the eight forms of the coupling that are discussed.

I. Introduction

Dark matter and dark energy are the dominant constituents of the universe,
making up about 95% of its mass. However, we know little about dark matter and
dark energy.

Figure 1: The Contents of the Universe:
Dark energy (blue) and dark matter (red) are
the dominant constituents. Together they
comprise 95.1% of the universe. The remain-
ing 4.9% (shown in green) includes baryonic
matter and radiation.

Dark Matter Although we do not know what dark energy is made up of, we
know that it exists because we can measure its gravitational effects. Dark matter
was first proposed to explain the following conundrum: We can calculate the
mass of galaxies in a galaxy cluster by measuring their orbital velocities, and we
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can calculate the amount of visible matter in these galaxies based on the amount
of light they emit. Comparing these two values, we find that the mass of visible
matter in these galaxies falls significantly short of the total mass. Dark matter,
so-called because it does not interact via the electromagnetic force, accounts for
this missing mass.

Dark Energy The source of dark energy is also a mystery. One proposed source
of dark energy will be discussed in Section III. We can see the effects of dark
energy in the expansion rate of the universe: when we measure the velocities of
distant supernovae, we can see that the expansion of the universe is accelerating
(the 2011 Nobel Prize in Physics was awarded for this discovery). Dark energy
must be driving the acceleration of the universe’s expansion.

In the standard model of cosmology, dark matter and dark energy do not
interact with ordinary matter, except via gravity. In the standard model, dark
matter and dark energy also don’t interact with each other. In Section IV, I will
introduce a coupling between dark energy and dark matter, and will explore
the impact of this coupling on the evolution of the dark energy and dark matter
densities.

II. Linear perturbation theory

On very large scales (greater than 10 megaparsecs), the universe appears homoge-
neous: its contents and structure do not vary much throughout space. Therefore,
we will take a homogenous universe as a zero-order approximation for the uni-
verse. In this zero-order universe, the densities of each species are constant
throughout space, e.g.

∂ρDM

∂xi = 0 ;
∂ρDE

∂xi = 0 for i ∈ {1, 2, 3} (1)

We can describe the expansion of the universe using the scale factor a(t) (see
Figure 2). The Hubble parameter H, named for Edwin Hubble, who first observed
that the universe is expanding, also describes the expansion rate. H depends on
the density of each species (e.g. baryons, dark matter, etc.) in the universe:

H ≡ 1
a

da
dt

∝

(
∑

i
ρi

)1/2

(2)

When we introduce a coupling between dark matter and dark energy in Section
IV, the evolution of ρDM and ρDE will be affected, which will in turn impact the
Hubble parameter and the evolution of a.
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Figure 2: The expansion of the universe will cause the side of a triangle to expand from
its initial length r(t0) to length a(t)r(t0) at a later time t.

However, the zero-order universe does not tell us the whole story, since the
universe is only approximately homogeneous. Now we have to add perturbations
to the zero-order universe. The distance scales we are considering are large
enough that we only need to consider first order perturbations, and all higher
order terms can be neglected.

For both dark matter and dark energy, I will split the stress-energy tensor Tµν

into a zero-order component Tµν

(0) and a first order perturbation δTµν:

Tµν
DM = Tµν

(0)DM + δTµν
DM

Tµν
DE = Tµν

(0)DE + δTµν
DE

(3)

The T00 component of each of these tensor equations gives the total energy density,
broken into a zero-order component ρ and a first-order perturbation δρ:

ρtot
DM = ρDM + δρDM

ρtot
DE = ρDE + δρDE

(4)

By considering the zero-order and first-order components of the stress-energy
tensor separately, I will work out separate differential equations for the zero-order
density ρ and for the density perturbations, which depend on δρ.

To perform these calculations, we will also need to know the equation of
state parameter w for both dark energy and dark matter. The equation of state
parameter for a given species is defined as the pressure over the density:

wi = pi/ρi (5)

Because dark matter has zero pressure (pDM = 0), the equation of state parameter
for dark matter is zero. The equation of state parameter for dark energy will be
discussed in detail in Section III.
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III. Quintessence

In the standard model of cosmology, the density of dark energy is a "cosmological
constant," Λ: it does not change as the universe expands. In order to introduce
coupling between dark energy and dark matter, I will discuss another model of
dark energy: a scalar quintessence field, φ, with potential V(φ). We assume that
the quintessence field is in "slow roll," so that

V′(φ)/V(φ)� 1 ; V′′(φ)/V(φ)� 1 (6)

The equation of state parameter for the quintessence field depends on the potential:

wQ =
p
ρ
=

1
2 φ̇2 −V(φ)
1
2 φ̇2 + V(φ)

(7)

Many different forms of the potential V(φ) result in a "tracker solution" for wQ:
that is, for many choices of the potential, wQ converges to the equation of state
parameter of the dominant species in the universe [1]. Therefore, it is practical
to choose a tracker solution for wQ, which is valid for many possible potentials,
rather than a single form for V(φ).

To calculate the stress-energy tensor of the quintessence field, we follow the
discussion of inflation in [2]:

Tµν
Q = gµαgνβ ∂φ

∂xα

∂φ

∂xβ
− 1

2
gµν

(
∂φ

∂xα

∂φ

∂xβ
gαβ + 2V(φ)

)
(8)

We choose gµν to be the perturbed Friedmann-Robertson-Walker metric to first
order:

ds2 = −(1 + 2Ψ)dt2 + a(t)2(1− 2Φ)(dx2 + dy2 + dz2) (9)

including first order metric perturbations Ψ and Φ.
Before introducing a coupling between dark matter and dark energy, we

consider the case of no coupling. For the case of no coupling, we assume that
neither dark matter nor the quintessence field interact with matter or radiation,
and that there are no interactions between dark matter and the quintessence field.
Under these assumptions, we have

∇µTµν
DM = 0

∇µTµν
DE = 0

(10)

where we use Tµν
DE = Tµν

Q , calculated in (8). Tµν
DM can be calculated using the

familiar formula for the stress-energy tensor:

Tµν = pgµν + (ρ + p)uµuν (11)
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where p is the pressure (p = 0 for dark matter), ρ is the dark matter density, and
uν is the dark matter four velocity.

Again following [2], we derive the equations of motion for the zero- and
first-order evolution of the densities by taking the ν = 0 component of (10) and
breaking up Tµν as in (3).

Zero-order We find the time evolution of the zero-order density of dark matter
(ρDM) and of dark energy (ρDE = ρQ) by considering only the zero-order terms in
(10). This gives

ρ̇DM + 3aHρDM = 0

ρ̇DE + 3aH(1 + w)ρDE = 0
(12)

where w = wQ is the equation of state parameter of the quintessence field. The
equation of state parameter is zero for dark matter, since pDM = 0.

First-order The density perturbations are described the first-order parameters δ

and θ. The density perturbation δ is defined as

δ = δρ/ρ (13)

The velocity gradient θ is defined as

θ = −ik jvj (14)

where vj is the spatial component of the four velocity of dark matter (for θDE),
or vj = ikjδφ/φ̇ with φ the quintessence field (for θDM). Considering only the
first-order terms in (10) yields differential equations for δDM and δDE:

δ̇DM = −(θDM − 3Φ̇)

δ̇DE = −(1 + w)(θDE − 3Φ̇)− 3aH(1− w)[δDE + aH(3(1 + w)) θDE
k2 ]

(15)

We can find the differential equation for θDM by following chapter 4 of [2], and
for θDE by taking the time derivative of (14):

θ̇DM = −aHθDM + k2Ψ

θ̇DE = 2aHθDE + k2δDE
1+w + k2Ψ

(16)
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IV. Introducing the coupling

When we introduce a coupling between dark matter and dark energy, we no longer
have Tµν

DM and Tµν
DE separately conserved as in (10), since energy is transferred

from dark matter to dark energy or vice versa. Instead, we have

∇Tµν
DM +∇Tµν

DE = 0 (17)

which can be broken down into

∇µTµν
DM = Qν

∇µTµν
DE = −Qν

(18)

where Qν is not necessarily zero.
We consider coupling of the form

Qν = Quν/a (19)

where uν is the four velocity of either the dark matter or dark energy fluid.
Dividing by a cancels the time dependence of uν. These appear to be the only
natural choices for the four-vector Qν, since uν

DE and uν
DM are the only four-vectors

that are relevant to dark matter/ dark energy coupling.
It is clear from (18) that the scalar Q in (19) must include units of energy

density. We therefore choose Q to be proportional to either the dark energy
density or the dark matter density:

Q ∝ ρDE ; Q ∝ ρDM (20)

We consider two choices for the proportionality of Q to ρ, where ρ is the
density of either dark matter or dark energy. First, we take Q to be

Q = ξaHρ (21)

where a is the scale factor, H the Hubble parameter, and ξ some scalar. This is the
form of Q discussed in [3] and [4]. Although this form for Q is more common in
the literature, there is no physical justification for why the coupling might depend
on global parameters like a and H. The second choice for Q does not encounter
this problem. In this case, the dark energy/ dark matter coupling is modeled as a
particle interaction, with interaction rate Γ:

Q = Γρ (22)

However, calculating the initial conditions for the density perturbations δ and θ

becomes significantly more complicated if we choose the second form for Q. All
eight different forms of Qν that we have discussed are summarized in Figure 3.
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Qν

Qν ∝ uν
DE

Q ∝ ρDE

Q ∝ ξaH Q ∝ Γ

Q ∝ ρDM

Q ∝ ξaH Q ∝ Γ

Qν ∝ uν
DM

Q ∝ ρDE

Q ∝ ξaH Q ∝ Γ

Q ∝ ρDM

Q ∝ ξaH Q ∝ Γ

Figure 3: This tree shows each of the choices for Qν that we consider.

Zero-order When we include dark matter/ dark energy coupling in any of these
forms, the equations describing the background evolution of ρDM and ρDE in (12)
each gain an additional term:

ρ̇DM + 3aHρDM = Q

ρ̇DE + 3aH(1 + w)ρDE = −Q
(23)

For no coupling, Q = 0 and these equations simplify to (12).

First-order The equations for the perturbations δ and θ also gain additional
terms when we include dark matter/ dark energy coupling:

δ̇DM = −(θDM − 3Φ̇) + Q
ρDM

( δQ
Q − δDM + Ψ)

δ̇DE = −(1 + w)(θDE − 3Φ̇)− Q
ρDE

( δQ
Q − δDE + Ψ)

−3aH(1− w)[δDE + aH(3(1 + w) + Q
ρDE

) θDE
k2 ]

(24)

θ̇DM = −aHθDM + (1− b) Q
ρDM

(θDE − θDM) + k2Ψ

θ̇DE = aH(2 + (1+b)Q
(1+w)aHρDE

)θDE + k2δDE
1+w + k2Ψ− bQθDM

ρDE(1+w)

(25)

For no coupling, Q = 0 and δQ = 0, so (24) and (25) equations simplify to (15) and
(16) respectively. In equation (25), b = 0 for Qν ∝ uν

DE and b = 1 for Qν ∝ uν
DM, as

in [3].

7



V. CLASS and the CMB

The CLASS ("Cosmic Linear Anisotropy Solving System") Boltzmann integrator [5]
computes cosmological observables by integrating differential equations including
(12), (15), (16), and many others. We are interested in one observable in particular:
the Cosmic Microwave Background (CMB) temperature power spectrum.

Cosmic Microwave Background The early universe was composed of a hot
plasma containing free electrons, protons, and photons. Around z = 1100, the
universe had cooled sufficiently to allow free electrons and protons to combine
to form neutrons, Hydrogen, and Helium. Without free electrons to scatter with,
photons began to free stream: since that time, these photons have travelled to us
virtually unimpeded. These photons are known as cosmic microwave background
(CMB) photons. The CMB temperature power spectrum is a very useful observ-
able for our purposes because the temperature fluctuations in the CMB closely
trace the perturbations that we are interested in.

In order to incorporate dark matter/ dark energy coupling into CLASS, we
modified the equations of motion for ρDM and ρDE to include the additional terms
gained in (23). Similarly, we modified the equations of motion for δDM, δDE, θDM,
and θDE to include the additional terms gained in (24) and (25). We can now
choose to run CLASS with any of the eight forms of Qν shown in Figure 3 for
a specified value of ξ or Γ. This study will be continued in fall 2013, and we
will use this version of CLASS to find the best fit values for each model, and
the corresponding CMB spectra. The details of these next steps are discussed in
Section VI.

As a test of the code, we use coupling of the form Qν = ξaHρDEuν
DM and the

best fit parameter values from [4], and compare the resulting spectrum to the
Planck best-fit spectrum (Figure 4). The evolution of ρDM and ρDE in each model
is compared in Figure 5.

VI. Conclusions and Further Steps

Our modified version of CLASS produces reasonable spectra for scenarios that
do not include massive neutrinos. However, when we include massive neutrinos
and compare the output of our code to spectra computed using CAMB (another
commonly used Boltzmann integrator, used in [4]), comparisons fail due to
inherent differences between CLASS and CAMB. Before proceeding with the
study, we need to understand the differences in the treatment of massive neutrinos
in CLASS and CAMB.
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Figure 4: (Left) We overlay the CMB temperature power spectra of the standard model
(Planck best-fit spectrum) and a coupled model, which uses Qν = ξaHρDEuν

DM and the
best fit parameters from [4]. (Right) The percent difference (as a function of multipole)
between the two spectra shown on the left.

Figure 5: The density of dark matter and
dark energy as a function of the scale factor
for two models: the dashed lines show the
densities for the Planck best-fit model, and
the solid lines show the densities for a model
using Qν = ξaHρDEuν

DM and the best fit
parameters from [4]. The density of dark
matter is diluted when we include the cou-
pling, since we have energy transferred from
dark matter to dark energy.

CLASS also needs to be further adjusted to run with a tracker solution for w
(it is currently set up to run only for w linear in a).

The next step will be to perform a joint probability distribution for the cosmo-
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logical parameters for each of our eight models. Interesting models, i.e. models
favoring Q significantly different from zero, will point towards the existence of
dark matter/ dark energy coupling, and will merit further investigation. The
existence of dark matter/ dark energy coupling would have exciting implications
for cosmology, particle physics, and beyond.
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