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Abstract

We extend the discrete Regge action used in current CDT Monte Carlo simulations

to include anisotropic terms inspired by the Hořava-Lifshitz action in 2+1 dimensions.

We demonstrate the existence of extended phases of geometry which agree with the

behavior of solutions to the classical equations of motion. We sketch the overall layout

of the phase diagram and initiate a study of the behavior of the model near phase

transitions.

1 Introduction

The Causal Dynamical Triangulations (CDT) program attempts to define quantum gravity

in terms of a statistical system of dynamical geometry. Considered a conservative approach

to answering questions of quantum gravity, CDT appeals only to the same tools applied with

great success to other local quantum field theories [7]. In essence, the program defines the

path integral ∫
G=

Lor(M)
Diff(M)

[Dgµν ]eiS[gµν ] (1.1)
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in terms of the partition function

Z =
∑
T

1

CT
eiS[T ] (1.2)

where the sum is take over simplicial manifolds T constructed from a set of D dimensional

simplices and S[T ] is a discrete action. The factor 1
CT

, equal to the inverse of the size of the

automorphism group of T , corresponds to the path integral measure. In addition to being

a simplicial manifold, T must also have a causal structure. This causal structure amounts

to gluing the simplices in a way that preserves a notion of global time. This distinguishes

the CDT program from the Euclidean DT program which failed to produce extended phases

of geometry in dimensions higher than two [7], [22], [2]. The discrete action S[T ] is the

discretized Einstein-Hilbert action referred to in this paper as the Regge action. In two 2+1

dimensions, the case of interest for this paper, the Regge action reduces to a functional of

the form κ3N3 − κ0N0 after application of the Dehn-Sommerville relations [18], [5]. The

constants κ0, κ3 contain the bare Newton constant and cosmological constant and Ni is the

total number of simplices of dimension i. We will have more to say about the details of CDT

in Section 3.

The structure of the CDT program allows for the use of numerical lattice techniques to

probe its properties. Monte Carlo simulations have provided considerable support for the

existence of extended phases of geometry [7], [2], [5], [3]. The average geometry observed

matches well with the expected (Euclidean) de Sitter behavior [5], [3]. Furthermore, studies

done on the ensemble average of the spectral dimension in 3 + 1 CDT have revealed not

only agreement with classical de Sitter geometry but have also shown that the small scale

geometry is effectively two dimensional [6], [8], [7], [2]. This is consistent with the predictions

of other quantum field-theoretic approaches to quantum gravity, namely the Hořava-Lifshitz
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theory [15] and Asymptotically Safe Gravity [21].

Given the success of CDT with the Regge action based on Einstein gravity, it would be

fascinating to consider some other gravitational theory amenable to CDT Monte Carlo sim-

ulations. In [14], Hořava proposes a different approach to quantum gravity which also relies

on the tools of local quantum field theory. The notion of (passive) diffeomorphism invariance

is abandoned in the UV to improve the behavior of the graviton propagator in that regime.

The diffeomorphism invariance is assumed to be restored as an accidental symmetry as the

RG flow takes us into the IR. This approach was largely inspired by anisotropic condensed

matter systems and we will sometimes also refer to the Hořava proposal as anisotropic grav-

ity. As we will demonstrate, Hořava-Lifshitz (HL) theory may be adapted for use in CDT

Monte Carlo simulations and produces extended phases in 2 + 1 dimensions.

We make rather modest goals in using the formalism of HL theory as a testing ground

for CDT techniques. It should be noted that interesting and deep connections between the

two seemingly disparate approaches have been observed [2], [1], [16]. Moreover, there is the

tantalizing prospect of using the HL discrete action in CDT lattice simulations to discern

qualitative information about the quantum nature of anisotropic gravity. We will leave such

speculations for Section 4.

The outline of the paper is as follows. In Section 2, we will present a lightning introduc-

tion to Hořava-Lifshitz theory, highlighting the salient features needed for our presentation.

References for further study of this large and exciting field are provided. In Section 3, we

outline the underlying notions of CDT and discuss in detail the construction of the discrete

action in 2 + 1 dimensions. In Section ?? we present our main results: the presence of

extended geometries and the correspondence with classically derived spacetimes, the layout

of the phase diagram and the behavior of a suitably chosen order parameter near a phase

transition. Section 4 will summarize our conclusions and discuss future work that will be of
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interest to the HL community. In order to streamline the presentation, Appendix A contains

the construction of the solutions to the equations of motion.

2 Basics of Hořava-Lifshitz Gravity

HL gravity is predicated on the loss of the diffeomorphism invariance of Einstein gravity

in the UV and the restoration of this symmetry in the IR under the RG flow of couplings.

The interested reader may consult [14], [13], [16] for the genesis of the proposal and the

excellent general overviews [26], [29]. See [23] for a review of the cosmological implications of

anisotropic gravity. In this paper, we will not concern ourselves with the physics implications

of HL gravity. As emphasized in the introduction and reiterated here, testing CDT ideas

against a gravitational theory fundamentally different from Einstein gravity will be our

primary objective.

The configuration space of HL gravity in D spatial dimensions consists of foliated mani-

folds with topology M = Σ× I. For simplicity, we will assume that Σ has the topology of a

D dimensional sphere. The foliated structure of the manifold reflects the loss of invariance

under Diff(M). The symmetry group is instead DiffF (M), the group of foliation preserv-

ing diffeomorphisms. Concretely, if we introduce a local smooth coordinate chart (xi, t),

DiffF (M) consists of reparametrizations of the form

x̃i = ζ i(x, t), t̃ = f(t) (2.1)

Note that, though spatial diffeomorphisms may be time-dependent, reparametrizations of

time must be independent of space. One may naturally wonder what advantage is gained

by such a radical shift in thinking. It is well known that including higher curvature terms in

the gravitational action can make the field theory renormalizable [10], [28]. However, such
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theories suffer from loss of unitarity and propagation of ghosts [25]. These issues stem from

the inclusion of higher time derivatives in addition to higher spatial derivatives in the action

thus maintaining the democracy of space and time.

However, by taking the symmetries to be foliation preserving only, we are allowed to

write down an action quadratic in time derivatives while simultaneously including higher

spatial derivatives. The anisotropic theory obtained this way is power-counting renormaliz-

able [14], [16]. Furthermore, the couplings of the higher spatial derivative terms are expected

to flow to their relativistic values under the RG in the infrared. This restores the full dif-

feomorphism symmetry inherent to Einstein gravity and essential for phenomenology as an

accidental symmetry.

The ADM formalism is the most natural to use in light of the foliated structure of

the underlying manifold. The field content consists of the spatial metric tensor gij(x, t),

the shift vector N j(x, t) and the lapse function N(t). Note that we are restricting the

lapse to be a function only of time. This is the so-called projectable version of the theory.

The reader interested in the more important aspects of the projectable version is referred

to [26], [29], [30]. See also [9] for a treatment of the projectable case and the so-called

healthy extension of HL theory. We motivate the use of the projectable case in this context

as follows: the time-like links of the simplices used in CDT have fixed length and this should

be reflected in the behavior of the lapse. We will have more to say about this soon.

Since we wish to maintain an action quadratic in time-derivatives, the kinetic piece must

be constructed out of invariants involving ġij. This quantity is clearly not covariant under

the symmetry group DiffF (M). However, the extrinsic curvature tensor

Kij =
1

2N(t)
(ġij −∇iNj −∇iNj) (2.2)
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satisfies this criterion. The covariant derivative ∇ is constructed from the metric tensor on

the spatial slice. The most general kinetic piece compatible with DiffF (M) is given by

2

κ2

∫
M

dtdDx
√
gN
(
KijK

ij − λK2
)

(2.3)

where κ2 plays the role of Newton’s constant. The parameter λ arises from the de Witt

super metric [14], [13] and is free to flow under the RG. The full diffeomorphism invariance

of Einstein gravity fixes this parameter to λ = 1.

The potential term of the action is constructed from the spatial metric tensor and its

spatial derivatives. In order to guarantee power-counting renormalizability of the action, the

potential piece will include terms of order 2D.1 If V [gij] is a scalar functional of the metric

tensor, the most general potential piece is

2

κ2

∫
M

√
gNV [gij] (2.4)

Putting 2.3 and 2.4 together, the HL action is

2

κ2

∫
M

dtdDx
√
gN
(
KijK

ij − λK2 − V [gij]
)

(2.5)

It may strike the reader that there is a proliferation of terms for dimensions D larger than 2.

This need not concern us since we are considering only D = 2. The most general anisotropic

action in this case is

2

κ2

∫
M

dtd2x
√
gN
(
KijK

ij − λK2 − αR2 + βR− 2Λ
)

(2.6)

where R is the Ricci scalar of the spatial metric tensor. In this paper, we will refer to α as

1For those familiar with the parlance of anisotropic gravity, the dynamical critical exponent z equals 2D
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the R2 coupling and λ as the K2 coupling for ease of exposition. Λ will be referred to as the

cosmological constant in keeping with tradition.

A glance at the equation of motion (A.3) derived by varying the spatial metric in (2.6)

reveals the absence of the β coupling. Indeed, the R term is a total derivative and the

integral over M depends only on the topology of the spatial slice and the time extension.2

This follows immediately from the Gauss-Bonnet theorem.

It is important to note here that the β coupling does influence the classical equations of

motion derived from the full projectable version of HL gravity. Variation of the lapse will

produce the non-local integral constraint

2

κ2

∫
Σ

d2x
√
g
(
KijK

ij − λK2 + αR2 − βR + 2Λ
)

= 0 (2.7)

As mentioned in [16] and demonstrated in [17], this constraint restricts the form of spatially

homogeneous and isotropic FRW solutions. Therefore, the classical phase diagram appearing

in [16] and [17] will be drastically different from the classical phase diagram obtained in the

present setting.

When (2.6) is discretized in Section 3 for use as a functional on CDTs, we will see that the

lapse is fixed to be time-independent in the process. This is due to the geometric restrictions

imposed by using simplices with fixed link length in constructing the triangulated manifold.

In effect, we are considering a reduced version of projectable HL in which (2.7) is ignored 3.

Since we are interested only in using HL gravity as a test-bed for CDT ideas, we will only

be concerned in demonstrating the existence of extended phases of geometry that match

the classical solutions to the reduced equations of motion found in Appendix A; i.e. those

2In Section 3, it is noted that the spacetimes comprising the ensemble have periodic boundary conditions
in the time direction. The time extension is held fixed and the β term in total contributes only an additive
constant to the action.

3See [9] for a discussion of the physical content of this reduced version of HL theory
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Figure 1: From right to left we have the (3,1), (2,2) and (1,3) tetrahedra used to construct
Causal Dynamical Triangulations (CDTs)

obtained by varying the metric and the shift vector, but not the lapse function.

3 The Discrete Hořava-Lifshitz Action

The 2 + 1 dimensional triangulated manifolds comprising the statistical ensemble of CDT

geometries are constructed from three basic tetrahedra. The triangulated manifolds are

required to have a causal structure and a global notion of time. This causal structure

allows for a well-defined notion of Wick rotation and is an essential ingredient for curing the

pathologies presented in the forerunner Euclidean DT program [2], [5].4 The causal structure

is enforced by triangulating the spatial slices (here having spherical topology) with spatial

triangles and connecting the vertices of these triangles with time-like links. The vertices in

adjacent spatial slices are connected in such a way as to produce only the (3, 1) the (1, 3)

4Forbidding topology change (i.e. the formation of baby universes) is the other essential ingredient.
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and the (2, 2) tetrahedra of Figure 1. The lengths of the spatial links are fixed to be ls = a

providing a short distance or UV cutoff. In Lorentzian signature, the lengths of space-like

and time-like links are related by

l2t
l2s

= −η < 0 (3.1)

Note that our parameter η corresponds to the parameter α common to CDT literature; we

reserve α for the R2 coupling constant.

The partition function (1.2) is evaluated with the Regge action S[T ] = κ3N3 − κ0N0

where N0 is the number of vertices and N3 is the number of tetrahedra in the CDT T . The

constants κ0 and κ3 contain the bare coupling constants. These quantities are all evaluated

in Lorentzian signature and then Wick rotated into Euclidean signature to perform numerical

lattice simulations as in [18]. The simulations themselves are performed using Monte Carlo

methods and the Metropolis algorithm. The details of the Metropolis algorithm, relevant to

both traditional CDT simulations and the extension considered here, may be found in [18].

As in the Euclidean DT program, an unphysical phase in 2+1 dimensions is observed [5].

In this phase, the time slices are effectively decoupled from each other. However, beyond

a certain critical value for the cosmological constant, an extended phase is observed. The

ensemble average geometry in this regime matches Euclidean de Sitter space. In 3 + 1

dimensions, the phase diagram has a richer structure though an extended phase with the

appropriate average geometry appears [3], [2], [7].5

In the following sections we will present our arguments for constructing a discrete ana-

logue of the continuum HL action (2.6) appropriate for CDT Monte Carlo simulations. The

ultimate objective will be to produce extended phases as witnessed in Regge action-based

CDT.

5We will make a few comments regarding this phase diagram in Section 4 given the tantalizing connection
between it and the phase diagram appearing in HL gravity in 3 + 1 dimensions [1].
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3.1 An Anisotropic CDT Action

It is our assertion that two very reasonable criteria must be satisfied when placing HL

gravity on the lattice for the sake of simplicity and consistency:

1. The discrete action should reduce manifestly to the discrete Regge action when all

couplings are dialed to their relativistic values; i.e. λ = 1 etc.

2. The transfer matrix defined on the space of boundary geometries must yield a well-

defined Hamiltonian.

To see how we might satisfy the first condition, let us write the continuum action (2.6)

as

SEH [gµν ] +
2

κ2
(1− λ)

∫
M

dtd2x
√
gN(t)K2 − 2

κ2
α

∫
M

dtd2x
√
gN(t)R2 (3.2)

This rearrangement is possible due to the Gauss-Codazzi relations. The additional terms

represent anisotropic contributions. The advantage of this formulation is that we may man-

ifestly reproduce the continuum Einstein-Hilbert action by dialing the couplings to their

relativistic values. This trivial rewriting instructs us on how to formulate the discrete HL

action: we simply need discrete analogues of the R2 and K2 integrals.

For clarity, we will discuss first the discrete analogue of the R2 term. This will allow us

to introduce notions relevant to both anisotropic terms while circumventing the additional

challenges that criterion (2) produces in building the analogue K2 term.

3.1.1 The R2 Term

In the Regge calculus, the Ricci scalar is defined in terms of deficit angles about d − 2

dimensional hinges if the simplicial complex has total dimension d [24]. However, curvature

is defined in a distributional sense and is concentrated at the hinges. It is therefore unclear
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what meaning can be given to curvature squared terms in this context. In what follows we

will adhere to the philosophy of [11] and [4] when considering discrete analogues of curvature

squared terms. As stated in [4], it is not the task of the CDT program to approximate a

given continuum manifold and so we will not be overly concerned with the distributional

definition of the Ricci scalar. Following the lead of [4], we fix a spatial slice and assign an

area Av to each vertex. This area is viewed as an appropriate share of the area of all spatial

triangles containing the vertex v . Specifically, if N4(v) represents the number of spatial

triangles sharing v in its spatial slice, then

Av =
1

6

∑
43v

A4 =
1

6

√
3

4
a2N4(v) (3.3)

since the triangles in the spatial slices are assumed to be equilateral. We define the curvature

density at the vertex v as

R =
δv
Av
≡

2π − π
3
N4(v)

1
6

√
3

4
a2N4(v)

(3.4)

The numerator δv is recognized as the deficit angle about the vertex v through shared

triangles in the spatial slice. Modulo uninteresting numerical factors which may be absorbed

into the definition of α, the discrete analogue of
∫

Σt
d2x
√
gR2 is

1

a2

∑
v∈Vt(T )

N4(v)

(
6−N4(v)

N4(v)

)2

(3.5)

with Vt(T ) denoting the set of vertices belonging to the time t spatial slice of the CDT T .

The most natural discretization of the time integral is

∫
dtN(t)→

∑
t

√
ηa (3.6)
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6 and so we make the identification

∫
M

dtd2x
√
gN(t)R2 →

√
η

a

∑
V (T )

(6−N4(v))2

N4(v)
(3.7)

where V (T ) denotes the vertex set of T .

3.1.2 The K2 Term

Defining the discrete version of the K2 term appearing in the 2+1 dimensional action follows

the same reasoning as in the previous section but with some additional complications. If we

adhere to the prescription in [4], then schematically we should have

∫
M

dtd2x
√
gNK2 →

∑
t

∑
o∈Ot(T )

Vs(o)

(
δ(o)V (o)

Vs(o)

)2

(3.8)

where o is the object assigned the extrinsic curvature density, V (o) is the volume of the object

and Vs(o) is the shared-volume of o; i.e. the volume of all top-dimensional objects containing

o. We are being purposefully abstract to motivate the definition used in our simulations. In

the R2 case, the choices of object type o and top-dimensional objects contributing to the

share-volume of o were quite clear given the intrinsic nature of the Ricci scalar. Put another

way, since the Ricci scalar is part of the intrinsic geometry of the continuum hypersurface,

there is sufficient reason to choose the o object type as a vertex and the top-dimensional

objects as spatial triangles.

The choice is not as clear cut in the case of extrinsic curvature which is sensitive (in

the continuum) to how the hypersurface is embedded in the ambient manifold. The discrete

definition of the K2 term must preserve as many of the geometric properties of its continuum

6As mentioned in Section 2, this discretization of the time integral assumes a constant lapse gauge during
the construction of the action. It is this assumption that rules out the non-local integral constraint (2.7)
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Figure 2: An embedding in three dimensions of two (3,1) tetrahedra (solid black) joined by
three (2,2) tetrahedra (thin black) all sharing a common edge. A vector perpendicular to
the triangular base of a (3,1) simplex will be rotated by an angle π − 2θ(3,1) − 3θ(2,2) as it is
parallel transported across the edge.

counterpart as possible. This observation requires us to take the top-dimensional objects

contributing to the share-volume Vs(o) to be tetrahedra. Furthermore, in the continuum,

K2 scales as L−2 for the unit of length L . Taken together, these observations imply that

the volume V (o) should scale as a2 and so o should be a spatial triangle.

Based on geometric considerations, we argued that o should be taken to be a spatial

triangle. The question of how to assign a deficit angle δ(o) to a spatial triangle remains. The

following is largely inspired by [19], the ideas therein adapted for use in CDT framework.

Consider a spatial slice of the CDT T . For each spatial triangle, we may define a future-

directed normal vector at the barycenter of its corresponding (3, 1) tetrahedron. A natural

measure of extrinsic curvature at the interface between two adjacent triangles e would be the

deficit angle of the normal vector as it is parallel transported from its initial (3, 1) tetrahedron
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to the other (3, 1) tetrahedron containing edge e. The example in Figure 2 can be generalized

to show that the deficit angle is

δe =
(
π − 2θ(3,1) − θ(2,2)N↑(2,2)(e)

)
(3.9)

with θ(3,1) and θ(2,2) being the (Lorentzian) dihedral angles about space-like edges. N↑(2,2)(e)

represents the number of (2, 2) tetrahedra attached to edge e and in the immediate future

of e. It is now straightforward to assign extrinsic curvature to the spatial triangle 4 as

δ4 =
(

3π − 6θ(3,1) − θ(2,2)N↑(2,2)(4)
)

(3.10)

which is reminiscent of a trace.

To summarize, a logical first choice for the discrete K2 term could be

∫
M

dtd2x
√
gNK2 → a4

∑
4∈Nspatial

2 (T )

(
3π − 6θ(3,1) − θ(2,2)N↑(2,2)(4)

)2

4V (3,1) + V (2,2)N↑(2,2)(4)
(3.11)

The denominator is the total (Lorentzian) volume of the tetrahedra that share 4 and are to

its immediate future; i.e. the share-volume.

There is a subtlety heretofore overlooked regarding criteria (2). Following the construc-

tion of [18], if we wish to ensure the existence of a well-defined Hamiltonian on the space of

boundary geometries, it becomes necessary to symmetrize the above term in the time direc-

tion. The square of the transfer matrix yields such a Hamiltonian if it can be proven that

the transfer matrix is symmetric and satisfies the Osterwalder-Schrader positivity condition

exactly as shown in [18]. Obviously, the action based on our postulated discrete K2 term

would fail to satisfy these criteria given the clear asymmetric time dependence. A simple fix
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would be to symmetrize the K2 term in the time direction. A bit of thought should convince

the reader that no essential geometric content is changed by doing so.

We conclude this section by summarizing the above conclusions with

∫
M

dtd2x
√
gNK2 → a4

∑
4∈Nspatial

2 (T ),b=↑,↓

(
3π − 6θ(3,1) − θ(2,2)N b

(2,2)(4)
)2

4V (3,1) + V (2,2)N b
(2,2)(4)

(3.12)

with obvious notations and modulo uninteresting numerical coefficients.

3.1.3 The Euclidean Action

In this section, we piece together the total discrete HL action and perform a Wick rotation.

In Lorentzian signature [18], the dihedral angles are given by

θ(3,1) =
π

2
+ i log

(
1 + 2

√
3η + 1√

3
√

4η + 1

)
(3.13)

θ(2,2) = i log

(
4η + 3− 2

√
2
√

2η + 1

4η + 1

)
(3.14)

The Wick rotation consists of rotating η through the lower complex plane to −η [18]. As

a consequence, if the argument of an expression of the form
√
η + c becomes negative as a

result of the Wick rotation, we interpret it as −i
√
− (η + c). A simple calculation shows

that after the Wick rotation

θ(3,1) =
π

2
− arccos

(
2
√

3η − 1√
3
√

4η − 1

)
, θ(2,2) = arccos

(
4η − 3

4η − 1

)
(3.15)

Also, the Lorentzian volumes

V (3,1) =
1

12

√
3η + 1a3 , V (2,2) =

1

6
√

2

√
2η + 1a3 (3.16)
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become

V (3,1) = −i 1

12

√
3η − 1a3, V (2,2) = −i 1

6
√

2

√
2η − 1a3 (3.17)

after Wick rotation.

The Euclidean discrete HL action is equal to

2

κ2
(1− λ)a

∑
4∈Nspatial

2 (T ),b=↑,↓

(
3π − 6θ(3,1) − θ(2,2)N b

(2,2)(4)
)2

2
√

2
√

3η − 1 +
√

2η − 1N b
(2,2)(4)

+

κ3(κ,Λ)N3 − κ0(κ,Λ)N0 +
2

κ2
α

√
η

a

∑
V (T )

(6−N4(v))2

N4(v)
(3.18)

This action is used in the Monte Carlo simulations which produced the results of the next

section.

4 Conclusions and Outlook

We have constructed a discrete analogue to the Hořava-Lifshitz action in 2+1 dimensions and

used it in CDT Monte Carlo simulations. There is significant evidence that extended phases

of geometry are present and match the classical solutions obtained through the continuum

action. This supports our central assertion that Causal Dynamical Triangulations is a robust

setting to address questions of a quantum nature for anisotropic gravity models as well as

Einstein gravity.

The focus in this article has been on the CDT program itself. However, we cannot resist

highlighting several possible applications of this work beyond providing a new test-bed for

CDT.

• In 2 + 1 dimensions, HL gravity has a single propagating scalar degree of freedom

which is in stark contrast with Einstein gravity in the same number of spacetime
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dimensions. This propagating scalar mode has generated much controversy regarding

the phenomenological viability of anisotropic gravity [26], [29]. As observed in [27],

2 + 1 HL gravity provides a unique window into the dynamics of the scalar mode

without introducing the complications of having propagating tensor modes. Studying

the quantum dynamics of the scalar mode in the context of CDT simulations would

be of great help in understanding the role of the scalar in 2 + 1 and ultimately 3 + 1

dimensions.

• Perturbations of projectable HL gravity about flat Minkowski space in 3+1 dimensions

have been shown to generate instabilities [20]. The situation is much improved when

the background spacetime is de Sitter [30]. There, it is possible to choose the mass scale

of higher derivative operators in conjunction with the exponential expansion of space in

order to suppress the instabilities of all modes. However, in the relativistic limit λ→ 1,

the higher derivative terms becomes relevant and the linearized analysis breaks down.

It has been shown that the non-perturbative Vainshtein mechanism allows one to take

the relativistic limit continuously [23], [30]. It would be interesting to understand how

this mechanism works in the context of anisotropic CDT simulations.

• The phase diagram of 3 + 1 dimensional CDT simulations using the Regge action

of Einstein gravity has a structure strikingly similar to that seen in Hořava-Lifshitz

gravity [1], [16]. Given that a fixed causal structure is a prerequisite to both approaches

to quantum gravity and both predict the same dimensional reduction in 2+1 and 3+1,

there is well-founded speculation that the two approaches are fundamentally related.

In [2], it is even speculated that the tri-critical point in the CDT phase diagram may

correspond to an anisotropic continuum limit. It is possible that a continuation of this

work to 3 + 1 dimensions may provide evidence to support these assertions.
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• A recent proposal for a coarse-graining procedure for CDT has appeared in [12]. This

opens up the possibility of studying the RG flow of couplings in anisotropic CDT. It

is often argued that the couplings of HL gravity will flow to their relativistic values in

the IR, thus restoring diffeomorphism invariance as an accidental symmetry. However,

very little proof of this assertion exists. Applying the coarse-graining procedure of [12]

may yield qualitative information on the flow of couplings for HL gravity. Conversely,

one may consider the qualitative results of such an RG study as confirmation of the

validity of the coarse-graining procedure based on our expectations from HL gravity

as a quantum field theory.

Generalizations of this work include modification of the framework to recover the full pro-

jectable HL theory and placing 3+1 dimensional HL theory on the lattice. The latter would

prove challenging due to the proliferation of possible terms in the potential. Furthermore,

a discrete action in 3 + 1 dimensions would necessarily have terms involving the Riemann

tensor that have not been considered in this work. Since we limited our scope to two spatial

dimensions, we had only to consider R2 and K2 terms. It is perhaps non-trivial to construct

discrete analogues of curvature terms that appear in 3 + 1 dimensional HL gravity.

The former may be possible if we exploit the observation in [9], [27] that the Stückelberg

formalism allows us to rewrite Hořava-Lifshitz theory in terms of general relativity coupled

to a scalar field referred to as the khronon. We hope to return to this possibility in the near

future.

Much work remains. The cross-fertilization of CDT and Hořava-Lifshitz gravity proves to

be a fruitful area of research and promises to yield new insights into two leading contenders

for a quantum theory of gravity.
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A Appendix: The Classical Equations of Motion

This appendix collects the classical equations of motion and the solutions relevant to the

Monte Carlo simulations performed for this paper. We will assume a Euclidean signature

and a compact spatial slice with the topology of S2.The action

S =
2

κ2

∫
M

dtd2x
√
gN(t)

(
λK2 −KijK

ij − αR2 + βR− 2Λ
)

(A.1)

implies the equations of motion

∇iπ
ij = 0 (A.2)

− 1
√
gN(t)

∂t
(
N(t)

√
gπij

)
+

1

2
gij
(
KklK

kl − λK2 − αR2 + 2Λ
)
− 2KilKj

l + 2λKKij

+2α∇i∇jR− 2α∇2Rgij +
1

2

(
∇lN

iπjl +∇lN
jπil − πij∇lN

l
)

= 0 (A.3)

where πij = Kij − λKgij. Equation ( A.2) is obtained by varying the shift vector and is

referred to as the momentum constraint. Equations ( A.3) come about by varying the spatial

metric and will be referred to as the metric equations of motion. We exclude the non-local

integral constraint that would arise from variations of the lapse.7

We consider a spatially homogeneous and isotropic metric ansatz of the form gij = a(t)2ĝij

with ĝij the round sphere metric. The shift vector Nj is taken to be identically 0. With this

assumption, the momentum constraint (A.2) is trivially satisfied.

7See Section 2
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A.1 Case λ = 1,Λ > 0

In this case, the metric equations of motion are satisfied if and only if

ä

a
=

α

2a4
− Λ (A.4)

This nonlinear equation in a(t) implies that

(
d

dt

(
a2 − C

2Λ

))2

= −2α +
C2

Λ
− 4Λ

(
a2 − C

2Λ

)2

(A.5)

where C is a constant of integration. If we write u(t) = a(t)2− C
2Λ

, then ( A.5) can be written

as

(u̇)2 + 4Λu2 = −2α +
C2

Λ
(A.6)

which has the solution

u(t) =

√
− α

2Λ
+

C2

4Λ2
cos
(

2
√

Λt+ δ
)

(A.7)

or

a(t)2 =
C

2Λ
+

√
− α

2Λ
+

C2

4Λ2
cos
(

2
√

Λt+ δ
)

(A.8)

for positive values of α.

When the sign of α is negative, we have the solution

a(t)2 =
C

2Λ
+

√
|α|
2Λ

+
C2

4Λ2
cos
(

2
√

Λt+ δ
)

(A.9)

which must have finite time-extent due to the zeros of a(t)2.
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A.2 Case α = 0

For the given metric ansatz, the metric equations of motion are satisfied if and only if

ä

a
= − Λ

2λ− 1
(A.10)
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