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ABSTRACT 
Decays that include multiple particles that interact only weakly and gravitationally arise in the Standard 
Model of particle physics, but are especially relevant to Supersymmetry models and to dark matter 
theories. Collider events that lead to such decays cannot be fully reconstructed from detector data, and 
they call for a new reconstruction method. This paper describes a novel method for the discrete 
determination of masses of these missing particles and all intermediate particles in the decay chain via the 
combination of multiple events into exactly-determined mathematical systems. It details the solutions for 
two such systems: (1) squark decay arising in R parity-conserving SUSY models at the LHC, and (2) 
standard model upsilon decay at SLAC.  
 This paper summarizes the research project in which I was involved as part of the Research 
Experiences for Undergraduates (REU) program at the University of California, Davis. It therefore 
includes an account of my personal contributions to this project. 
 

  
 

1. Introduction 
 
Many particle processes predicted both by the Standard Model (SM) of particle physics and by 
theories beyond the SM involve the production of weakly-interacting neutral particles, which 
cannot be detected in present or forthcoming particle colliders, such as the Tevatron at Fermilab, 
IL, the Stanford Linear Accelerator (SLAC) in Palo Alto, CA, and the Large Hadron Collider 
(LHC) at CERN, Switzerland. Reconstruction of the momenta of these “invisible” particles must 
therefore rely on a combination of data on the momenta of visible particles from the same decay 
chain and on mathematical techniques. Recently, some progress has been made towards finding 
new methods to address this issue. One approach [1,2] has been to examine mass distribution 
edges, possibly in combination with other methods that induce greater precision. An alternative 
idea [3,4] is to determine the missing masses by solving systems consisting of combinations of 
multiple events. The latter approach may require fewer events to reach the same, or better, 
precision, than the former. This paper analyzes a particular class of decay topologies – those that 
have “mirrored” chains of decay per event – using the multiple-event solution method. More 
specifically, for some topologies under a certain set of conditions this approach generates 
discrete mass solutions without necessitating endpoint analysis by forming and solving exactly-
determined systems.  
 The search for successful reconstruction methods for events with two or more missing 
particles is largely motivated by the expectation that new physics processes of these types will 
take place at the energy range that will be available at the LHC when it becomes operational in 
2008. In particular, various supersymmetry (SUSY) models predict the production of neutral 
final-state particles that only interact weakly and gravitationally in colliders. On the basis of 
theoretical considerations, it is possible that these particles may be produced at energies as low 

                                                 
1 The research discussed in this paper was conducted as part of the Research Experiences for Undergraduates (REU) 

Program at the University of California, Davis under the guidance of and jointly with Hsin-Chia Cheng, Zhenyu 
Han, and Bob McElrath. My work was supported by the National Science Foundation. 
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as 100 GeV – 1 TeV, a range that will be accessible at the LHC. 
 While the SM has been remarkably successful in predicting experimental results, it leads 
to stabilization problems in the mechanism of electroweak symmetry breaking that is responsible 
for the generation of mass in elementary particles. The SM postulates a particle – the Higgs 
boson – that is responsible for giving mass to these particles; however, the theory fails to account 
for quantum divergences that arise in the mass term of the Higgs. In the absence of a satisfactory 
mechanism to account for and cancel these divergences, extreme fine-tuning of the bare mass 
term of the Higgs is necessary to reduce the mass to a level compatible with electroweak 
symmetry breaking. Such fine-tuning has no theoretical justification, and consequently various 
theories beyond the SM have been proposed to deal with the divergences – the so-called 
“hierarchy problem.” Supersymmetry theories are largely motivated by the necessity to resolve 
the hierarchy problem, and they provide a mechanism for the cancellation of the Higgs 
divergences via the existence of new, heavy particles possessing a new type of symmetry

2
. In 

SUSY, every SM particle has a “super-partner” of different spin, but that is otherwise identical:  
SM bosons have fermionic superpartners with the suffix “-ino” attached (e.g. the gluon has the 
gluino as a superpartner), while SM fermions have bosonic superpartners with the prefix “s-” 
attached (e.g. squarks are the superpartners of SM quarks). Some super-particles, or “sparticles,” 
are mixings of other sparticles. Neutralinos, for example, are mixings of wino and bino sparticles 

(both gauginos) and of the Higgsino; there are four such mixings, denoted as χ 0

i
where i is an 

index assigned in order of increasing mass. Neutralinos do not participate in the strong 
interactions, and as their name indicates, they are neutral particles so they do not interact 
electromagnetically. Therefore, if they are produced in a collider and if they are stable, they 
escape the collider undetected, leaving only a “missing momentum” signature. 
  SUSY models that conserve R-parity – a discrete multiplicative symmetry that takes on a 
R = +1 value for SM particles and R = -1 value for SUSY particles

3
 – imply that the lightest 

supersymmetric particle (LSP) is absolutely stable. Since the LSP clearly cannot decay into other 
(heavier) sparticles, its only option is to decay into lighter SM particles; however, conservation 

of R-parity – which is multiplicative – forbids such decays, since ∏ +≠− )1(1 . In this case, if 

the LSP is also neutral, then it is an excellent candidate for the hypothesized Weakly-Interacting 
Massive Particle (WIMP) of cold dark matter

4
: it is neutral, stable on a cosmological timescale, 

and interacts only weakly and gravitationally. Some SUSY models postulate that the first 

neutralino, χ 0

1
, is the LSP. Should this hold true, an accurate measurement of the mass of  the χ 0

1
 

would not only shed light on SUSY models, but could also be used to gauge whether it is 
compatible with the estimated cold dark matter density in the universe, thus helping to confirm 
or reject theories in cosmology as well. An additional implication of R-parity conservation is that 
SUSY particles are always pair-produced in a collider: since the colliding particles are SM 
particles with even (+1) parity, they cannot produce an odd number of odd (-1) parity particles, 
but must produce an even number of such particles

5
. To summarize, then, in R parity-conserving 

SUSY models in which the χ 0

1
 is the LSP, any SUSY decay chain must end in the χ 0

1
– invisible 

                                                 
2 Two other notable approaches to the hierarchy problem are Technicolor and large extra spatial dimensions. 
3 Defined as ( ) ,=R

L++3B2S
1− where S is spin, B is the baryon number, and L the lepton number of the particle [5]. 

4 Dark matter (cold and hot) is estimated to constitute about 22% of the universe and 85% of all matter in the 
universe. Dark energy is estimated to constitute about 74% of the universe and baryonic (regular) matter only 4% 
[6]. 

5 The same logic applies to SUSY pair-annihilation. 
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to the detectors – and all SUSY events must contain an even number of these chains, compatible 
with the production of an even number of SUSY particles. Consequently, in these models SUSY 
events always contain at least two missing particles. 
 Supersymmetry, like electroweak symmetry, is a feature of high energies; it is broken at 
lower energies, leading to a mass discrepancy between SM particles and their superpartners 
when the superpartners become significantly more massive. If supersymmetry is to solve the 
hierarchy problem, then the supersymmetry-breaking scale cannot be much higher than the 
electroweak-breaking scale, i.e. at energies of 100 GeV – 1 TeV. In other words, if 
supersymmetric particle masses fall in this range – which will be accessible at the LHC in 2008 – 
then sparticles provide the necessary contributions to cancel the Higgs divergences. This 
theoretical consideration is the main motivator for the myriad of ongoing SUSY LHC 
phenomenology researches, including the work described in this paper. 
 This paper describes a novel method for finding discrete mass-space solutions for 

topologies that arise in R parity-conserving SUSY models where the LSP is the χ 0

1
. Though the 

features of these topologies – two or more missing particles
6
 together with several stages of 

decay and multiple visible resonances – are by no means limited to decays predicted by these 
models or exclusively to SUSY, their examination is motivated by these theories. While it is not 
possible to derive discrete solutions for missing particles' momenta in every decay topology, 
some topologies do have discrete solutions under the right mathematical manipulation. This 
paper discusses the types of topologies that can be solved discretely and describes the generic 
solution procedure (Section 2). It further describes the specific mathematical solutions of two 
such topologies: the first (Section 3) arising in SUSY models postulating R-parity conservation 
and a neutral LSP, and the second (Section 4) a SM meson decay that we hope to use to test our 
method. 
 This paper culminates my summer research work as part of the Physics Research 
Experiences for Undergraduates (REU) Program at the University of California, Davis, and I will 
therefore conclude with an account of my contributions to this project. 
 
 

2. Topologies Permitting Discrete Mass-Space Solution 
 
Let M represent the number of invisible – or missing – particles (those that escape the collider 
without detection) and I the number of intermediate particles (those that decay within the 
collider) in the topology (i.e. per event). If, based on the physics of the decay, we can make the 
assumption that the masses of corresponding intermediate particles are equal (i.e. in Figure 1, 

x'x M=M  and/or y'y M=M ) then the calculations are considerably simplified and the number of 

events that must be correlated in order to find discrete solutions is reduced. Let S represent the 

number of such assumptions made, i.e. if we assume x'x M=M  but y'y MM ≠ , then S = 1. In the 

class of toplogies discussed here, the invisible particles at the end of the decay chain (L and L') 
are all of the same type. This is not accounted for by this variable but is taken to be the default. 
Finally, let N represent the number of events necessary for finding a discrete solution for the 
topology. Note that in some cases the following derivation may either give a fractional solution 
for N or no solution for N, in which case the topology with the given assumptions cannot be 
solved discretely for any number of events. Mathematically, this is a consequence of the system 

                                                 
6 This paper discusses only topologies in which the final-state missing particles are identical, because these are the 

topologies motivated by R parity-conserving SUSY models. 



 4 

being either overdetermined or underdetermined for any number of events: an event combination 
of N events and M missing particles constitutes a system of 4MN variables (where the factor of 4 
is due to the Lorentz four-momenta of each missing particle). To solve this system, it is 
necessary for the system to consist of 4MN linearly independent equations; this is not possible in 
every case. 
 
2.1. The Quadratic Component 
 

For the invisible particle i, we have 
2222

iiii pE=p=M
r− in Lorentz notation

7
. Since final-state 

particles are stable, they are produced on their mass shell and have zero width in their mass 
distribution

8
, and so all final-state particles of the same type have equal masses. In this paper, we 

discuss only topologies in which all final-state invisible particles are of the same type. If we have 

M such particles in each event, then we have 2
M,

2
2,

2
1, )(...)()( evtievtievti p==p=p , which gives M-1 

quadratic equations in energy for each event. Moreover, the masses of the particles in all events 

are equal, e.g. for missing particle u, we have 2
u,

2
2u,

2
1u, )(...)()( evtNevtevt p==p=p , which gives N-

1 equations for each missing particle, or M(N-1) for all missing particles.  We have, therefore, a 
total of M(N-1)+M-1 quadratic equations in energy for N events and M missing particles per 
event.  
 
2.2. The Linear Component 
 
The linear component is composed of the missing momentum equations and the intermediate 
masses equations. The number of missing momentum equations depends on whether the decay 
takes place at a hadron or at a lepton collider. The equations governing the relations between the 
intermediate masses equations are collider-independent and are intrinsic to the topology itself. 
 The essential difference between hadron colliders, such as the LHC, and lepton colliders, 
such as SLAC, is the amount of information known about the initial state of the system. At a 
hadron collider, it is not possible to control the production energy of the desired initial-state 
particle because hadrons (protons, in the case of the LHC) are complex objects consisting of 
“partons” – valence quarks and a quark-gluon cloud. The exact fraction of total proton 
momentum occupied by each parton cannot be known and is only probabilistically described by 
parton distribution functions, which are derived experimentally. A hadronic collision is therefore 
a parton-parton collision with unknown momenta, and therefore the initial-state momenta along 
the beam line and the initial energy are unknown. Nonetheless, some initial-state momentum 
reconstruction is possible. Since the decaying particle is produced by partons moving along the 
beam line (z-axis), it has, to a good approximation, no transverse

9
 momentum. Therefore, the 

final-state of the decay should similarly have zero transverse momentum. The solution, then, is 
to sum up all final-state momenta measurements along the x- and y- directions (individually); the 
transverse momenta of all missing particles is the negative of the sum, since the total transverse 

                                                 
7 In Lorentz notation, ( )zyxi p,p,pE,=p , and jijiji ppEE=pp

rr ⋅−⋅ . 
8 All particles that decay have a certain width to their mass distribution; they may be produced at any mass within 

that distribution. Though normally the masses fall very closely to the distribution peak (the “classical” mass), 
there is some mass fluctuation. Particles may also be off their mass shell without violating energy conservation 
for a finite time due to the energy-time uncertainty relation. They are not “real” particles in that respect and must 
decay into other particles within the amount of time allowed by the uncertainty relation. 

9 Along the x- and y- axis of the collider; perpendicular to the direction of beam propagation. 



 5 

momentum must be zero. Hence, at a hadron collider we have for each event: ∑−
visible

xxmiss, p=p and 

∑−
visible

yymiss, p=p .  This gives 2N equations for each event combination from the missing 

momentum at a hadron collider. 
 
 

 

 
 
  
 
 

At a lepton collider the initial-state can be fully known. Since leptons are not composite 
objects, setting the initial beam energy determines entirely the collision energy. Particle i can be 
produced on-shell by setting the collision energy to its on-shell mass, in which case we know the 
full four-momenta of the decay and have the following equations for each event: 

∑−
visible

xxinitial,xmiss, pp=p , ∑−
visible

yyinitial,ymiss, pp=p , ∑−
visible

zzinitial,zmiss, pp=p , and ∑−
visible

initialmiss EE=E .  

Hence we have 4N equations for each event combination from the missing momentum at a 
lepton collider.  
 The remaining linear equations come from the relations between the intermediate particle 
masses, i.e. the masses of particles X, X', Y, Y', Z, and Z’ in Figure 1. Suppose that intermediate 

particle X decays into particles i = 1, 2, ..., n. Then ( ) ∑
i

inx p=p++p+p=M 22

21

2
)(... , where ip is 

the Lorentz four-vector. Ignoring for the moment finite-width effects and off-shell resonances
10

, 
the masses of intermediate particle X in all events are equal. So we have 

                                                 
10 The probability of a particle being off-shell decreases as its mass moves farther from the on-shell (classical) mass. 

In some models, the width of the mass distributions of all relevant particles is very small, with the greatest width 
on the order of a few GeV (normally for squarks). In those cases it is possible to ignore these effects in the 
mathematical analysis and then use cuts in the final mass distributions (see Section 3.3) to account for these 
small effects. However, other models may have substantially more pronounced finite-width effects for some 
particles, in which case this analysis may be highly inaccurate or entirely invalid.  
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detected 
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FIGURE 1: Sample topology of mirrored-chain decays and multiple missing particles 
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∑∑∑
i

evtNi,
i

evti,
i

evti, p==p=p
22

2

2

1 ... , or N-1 equations for each intermediate particle type. If there 

are I intermediate particles, then we have I(N-1) such equations. If, due to the physics involved, 
we can make the assumption that any two corresponding intermediate particles in the same event 

are of the same type or of equal mass (i.e. x'x M=M  and/or y'y M=M ) then we have one 

additional equation (
22

X'X p=p ) for each such assumption. For S such assumptions, we have 

I(N-1)+S. Notably, since the missing particles all have equal masses, then when any of the 
intermediate particle equations is expanded and squared, the quadratic terms 

22

2

2

1

22

2

2

1 ...... nn M,,M,M=p,,p,p cancel each other out, causing the equations to have only a linear 

dependence on np,,p,p ...21 . 

 The system will have a discrete solution if the number of equations equals the number of 
variables 4MN. Solving for N by setting the number of equations to the number of variables 
4MN generates the following scenarios: 
 
Hadron collider, equality of intermediate masses not assumed: N = (1+I)/(2-3M+I) 
Hadron collider, all corresponding intermediate particles have equal masses: N = (1+I-S)/(2-
3M+I) where S is half the number of intermediate particles (S is even by default). 
Lepton collider, equality of intermediate masses not assumed: N = (1+I)/(4-3M+I) 
Lepton collider, all corresponding intermediate particles have equal masses: N = (1+I-S)/(4-
3M+I) where S is half the number of intermediate particles (S is even by default). 
 
 Therefore, for the scenario of two missing final-state particles and six intermediate 
particles at a hadron collider, where all intermediates are assumed to be equal (i.e. S = 3), we can 
solve for the missing momentum discretely if we form combinations of two events. I.e. each 
system consists of a pair of events. On the other hand, the scenario of two missing final-state 
particles and four intermediate particles has no discrete solutions at a hadron collider because 2-
3M+I always equals zero. However, it has an integer-N solution at a lepton collider in certain 
cases; for example, if S = 1, then we have a solution for N = 2.  
 
 

3. Topology I: Squark Pair-Production at the LHC 
  
Assuming R-parity conservation, squarks are pair-produced at a proton-proton collision, leading 
to two decay chains in each event. In this topology (Figure 2), each squark subsequently decays 

into the second neutralino ( χ 0

2
) and a SM quark. The SM quark hadronizes and exits the collider 

as a jet, which is then detected by the detector subsystems and is reconstructed via jet 

reconstruction algorithms. The χ 0

2
 further decays into a lepton and a slepton; the lepton exits the 

collider and is detected, and the slepton undergoes a further decay into a lepton (which also 

exists the collider and is detected) and the first (lightest) neutralino – the χ 0

1
– which is the LSP 

in the model and which undergoes no further decays due to R-parity conservation. What we 
have, therefore, are two mirrored chains of decay, with six visible particles (four leptons and two 

quarks), six intermediate particles that decay inside the collider (the two squarks, two χ 0

2
’s, and 

two sleptons, where we assume no finite-width or off-shell particles, i.e. equal masses of 

corresponding particles on each chain), and two final-state missing particles – the two χ 0

1
’s.  
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3.1. Mathematical Solution of the Topology 
 
From the derivation in Section 2, at the LHC – a hadron collider – under the assumption of 
completely mirrored chains, i.e. all masses of corresponding intermediate particles are equal, we 
can solve the topology discretely with combinations of two events. We have sixteen variables 
(refer to Figure 3): p1, p2, pa, pb (where p = (E,px,py,pz)), and sixteen equations. The quadratic 

system is as follows: 
 

2

2

2

1 p=p   
2

2

2

2

2

1

2

1 pE=pE
rr −−  

22

1 ap=p     ----> 
222

1

2

1 aa pE=pE
rr −−  

22

1 bp=p   
222

1

2

1 bb pE=pE
rr −−  

 

Since
222

24

2

13 bdac M=M=M=M by assumption, 

 

  ( ) ( )242

2

31 p+p=p+p    ( ) 2

3

2

442312 pp=pppp −⋅−⋅  

  ( ) ( )22

31 ca p+p=p+p       ----> ( ) 2

3

2

312 pp=pppp cca −⋅−⋅  

  ( ) ( )22

31 db p+p=p+p    ( ) 2

3

2

312 pp=pppp ddb −⋅−⋅  

 

because p
1

2
= p

2

2
= p

a

2
= p

b

2

by assumption, and so these terms cancel out. The above three 

equations can be written as: 

u 
~ 

u 
~ 

l 
~ 

l 
~ 

χ2 ~ 0 

χ2 ~ 0 

χ1 ~ 0 

χ1 ~ 0 

u 

u 

l 

l l 

l 

FIGURE 2: Squark pair-production followed by mirrored-chain decay 
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   ( ) 2

3

2

4424231312 MM=pp+EEppEE −⋅⋅−⋅−⋅ rrrr
 

   ( ) 2

3

2

31312 MM=pp+EEppEE ccaca −⋅⋅−⋅−⋅ rrrr
 

   ( ) 2

3

2

31312 MM=pp+EEppEE ddbdb −⋅⋅−⋅−⋅ rrrr
 

 
 

               
 
 
 

Similarly, since 
222

246

2

135 bdface M=M=M=M by assumption, we have: 

 

( ) ( ) ( ) ( )[ ] 2

5

2

3

2

6

2

46426425315312 MMM+M=p+pp+E+EEp+ppE+EE −−⋅⋅−⋅−⋅ rrrrrr
 

( ) ( ) ( ) ( )[ ] 2

5

2

3

22

5315312 MMM+M=p+pp+E+EEp+ppE+EE ececaeca −−⋅⋅−⋅−⋅ rrrrrr
 

( ) ( ) ( ) ( )[ ] 2

5

2

3

22

5315312 MMM+M=p+pp+E+EEp+ppE+EE fdfdbfdb −−⋅⋅−⋅−⋅ rrrrrr
 

 

and from 
222

2468

2

1357 bdfhaceg M=M=M=M we have: 

 

     
( ) ( ) ( ) ( )[ ]

2

7

2

5

2

3

2

8

2

6

2

4

86428642753175312

MMMM+M+M=

p+p+pp+E+E+EEp+p+ppE+E+EE

−−−

=⋅⋅−⋅−⋅ rrrrrrrr

 

     
( ) ( ) ( ) ( )[ ]

2

7

2

5

2

3

222

753175312

MMMM+M+M

=p+p+pp+E+E+EEp+p+ppE+E+EE

gec

gecageca

−−−=

⋅⋅−⋅−⋅ rrrrrrrr

 

     
( ) ( ) ( ) ( )[ ]

2

7

2

5

2

3

222

753175312

MMMM+M+M

=p+p+pp+E+E+EEp+p+ppE+E+EE

hfd

hfdbhfdb

−−−=

⋅⋅−⋅−⋅ rrrrrrrr

 

 
Finally, we have the four missing tranverse momentum equations: 
 

   ( )xxxxxxxevtImiss,xx p+p+p+p+p+p=p=p+p 8,7,6,5,4,3,2,1, −  

   ( )yyyyyyyevtImiss,yy p+p+p+p+p+p=p=p+p 8,7,6,5,4,3,2,1, −  

   ( )xh,xg,xf,xe,xd,xc,xevtIImiss,xb,xa, p+p+p+p+p+p=p=p+p −  

   ( )yh,yg,yf,ye,yd,yc,yevtIImiss,yb,ya, p+p+p+p+p+p=p=p+p −  

u 
~ 

u 
~ 

l 
~ 

l 
~ 

χ2 ~ 0 

χ2 ~ 0 

g 

h 

e 

f d 

c 

a 

b 

u 
~ 

u 
~ 

l 
~ 

l 
~ 

χ2 ~ 0 

χ2 ~ 0 

7 

8 

5 

6 4 

3 

1 

2 

FIGURE 3: Labeling for the two arbitrary events in each combination 
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 First we solve the linear system in terms of three of the energies (the choice of which 
three of the four energies is arbitrary). This allows us to rewrite the three quadratic equations in a 
total of three variables. Given the size of the linear system, an analytic solution is cumbersome 
and not easily found. Numerically, the 13 by 13 system is easily solved by a computer program 
employing simple linear algebraic routines (refer to Section 3.2). An analytic solution to the 
quadratic system does not exist

11
; in fact, even good numerical solutions are not easy to program, 

and they exhibit various problems (refer to Section 3.2). Once the values for the three energies 
have been found, these can be substituted into the solution for the linear system to solve for the 
remaining momenta components of the missing final-state particles, and hence also for the 
intermediate particles, in each pair of events. 
 Solving for the missing four-momenta becomes significantly more involved when the 
assumption that the detected visible momenta are perfectly matched to the corresponding 
particles in the topology is removed. In reality, it is not possible to infer from the data which 
lepton momenta correspond to a particular diagram lepton, and it is only known which leptons 
are positively- and negatively-charged and what type they are (e.g. electrons or muons). To allow 
for all possibilities in the data, it is necessary to form combinations of the detected momenta for 
each event. Due to charge conservation, in each of the mirrored decay chains the two leptons 
must have opposite charges. Therefore, if lepton 5 is positive, lepton 3 must be negative, which 
leaves a dual freedom for lepton 6; however once the charge of lepton 6 is picked, the charge of 
lepton 4 must be the opposite. If all leptons are of the same type, then the result is sixteen 

possible combinatorics for each event, or 2561616 =× combinatorics per pair
12

. If a total of N 
events are analyzed, we have N(N-1)/2 pairs, or a total of 128N(N-1) combinations. For the large 
number of events (N ≥ 1000) generally desired for reasonable statistics, the solution process may 
become very time-consuming, and highly effective programming algorithms are essential for 
reducing the solution time involved while retaining the accuracy of the solutions. 
 Another idealization that was assumed in the mathematical solution is the equality of the 
masses of all intermediate corresponding particles. I.e. we assumed that all squarks have the 

same mass, that all the χ 0

2
’s have the same mass, and that all the sleptons have the same mass. 

However, due to finite-width effects and off-shell resonances this is not exactly true. Note that 

since the χ 0

1
’s are stable, they both have zero-width mass distributions and are on-shell, and 

therefore the assumption that they have equal masses is exactly correct. 
 Additionally, the smearing of momenta caused by detector resolution effects further 
contributes to wrong statistics and widens the final mass distributions by adding off-peak 
solutions. 
 
3.2. Computational Work 
 
The code that solves this topology is composed of several files written in C++ with ROOT

13
 

classes that perform the tasks of event generation (simulation), input and output management, 
linear system derivation and solution, construction of the quadratic system, quadratic system 
solving and the discarding of negative or complex solutions, and substitution of the quadratic 
solutions into the remaining momenta equations for full event reconstruction.  

                                                 
11 This was established by Abel’s Impossibility Theorem, which states that a polynomial equation of fifth degree or 

higher does not have an algebraic solution [7]. 
12 If we are to analyze processes in which the leptons are of mixed types, then the number of needed combinations is 

reduced due to fewer degrees of freedom. 
13 Particle analysis software developed at CERN, Switzerland [8].  
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 For the ideal scenario, the main code uses the TPythia ROOT class to generate events. 
This is an interface class in C++ to the Fortran-77 Monte-Carlo event generation program Pythia 
[9]. An alternate code uses ATLFast

14
 to generate events in a more realistic collider environment 

simulation. Data storage in either of these programs is undertaken via the use of C++ structures 
that define a single event, an event combination (i.e. a pair of events), and a solution set. These 
structures are outputted to binary files, which can be read by executing a separate program. 
 The main code pairs up all the events and forms all 128N(N-1) combinations, extracts the 
visible four-momenta from the relevant structures, and constructs the two matrices – of 
dimensions 13 by 13 and 13 by 4 respectively – used to solve the linear system for the 

( )ba p,p,p,p=v
rrrr

21  vector of unknowns. The 13 by 13 matrix is inverted and multiplied by the 13 

by 4 matrix to generate the solutions for v
r
in terms of E1, E2, and Ea. At this point the remaining 

equations are the three quadratics, which now contain only constants and the variables E1, E2, 

and Ea. The quadratic solver accepts the quadratic equations in matrix format; if Q is a matrix for 

the i
th
 quadratic, then ( ) ( )1.1, 2121 aa E,E,EQE,E,E ⋅⋅  equals the i

th
 quadratic equation. The code 

uses the linear solution to construct these matrices and send them to the solver. 
 We currently have two types of solvers that can interact with the main program to 
generate solutions for the quadratic equations. One is based on homotopy methods, and the 
second uses algebraic reduction and elimination methods to reduce the three quadratics to a 
single univariate ninth-order polynomial, which is then solved numerically by the polynomial 
root solver Rpoly_ak1 [11] (based on the Jenkins-Traub method). Both these solvers employ 
Newton's method to refine the roots that they find. At present, these solvers are still undergoing 
further improvement. They have both been shown to miss a small percentage of the solutions 

(≈0.1%) due to machine precision problems. Although this is below the error due to detector 

resolution and other experimental effects, we hope to further reduce it.  
 The solvers eliminate any solution sets (where a “set” consists of a (E1, E2, Ea) constant 

vector) containing complex energy solutions before sending them to the main code. The main 
code then accepts all the real solution sets

15
, some of which may contain negative energy 

solutions as well as solutions that are positive in E1, E2, and Ea but negative in Eb. The main code 

processes all solution sets to extract the ones that contain only positive energies, and then uses 

those to solve for the remaining 4-momenta ( v
r
, above). All this information is stored in the 

structures discussed above. 
 
3.3. Data Analysis and Results 
 
Once the quadratic solvers are deemed satisfactory, the solution code will be run on the order of 
1000 simulated events in the ideal scenario of no smearing and no finite-width effects or off-
shell resonances as well as in scenarios including all of these effects. Due to the large number of 
combinatorics, this will be a computing power-intensive task that will necessitate the use of 
multiple computers over the course of several days (with the exact amount of time dependent on 
which solver has been chosen). 

                                                 
14 ATLFast is a ROOT-based fast Monte-Carlo simulation program for the ATLAS detector at the LHC [10].  
15 There are zero such sets in the case that all solutions are complex. The solver using homotopy methods may return 

up to eight real solutions (in the case that none of the solutions are complex); the second solver may return up to 
nine real solutions (in the case that none of the solutions are complex) because although a system of three 
quadratics should have eight solutions, due to the reduction of the system to a ninth-order polynomial there are 
nine solutions.  
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 As a quick initial test of the code, some mass distribution plots were generated both in the 
ideal scenario and with momentum smearing and finite-width effects using the second version of 
the main code (refer to the previous section). A few of these are shown in Figures 4-7. The 
solutions plotted in these figures were generated by the second quadratic solver discussed above 
(that reduces the equations to a ninth-order univariate polynomial). The figures clearly show that 
adding smearing, finite-width, and off-shell effects widens the distributions. Moreover, though 
running the code with all combinatorics generates more wrong solutions (thus increasing the 
width of the distributions), the peak at the correct mass point is clearly present even when the 
combinatorics are added, as long as there are no smearing, finite-width effects, or off-shell 
particles. Once these effects are added (through the ATLFast software), there are no longer 
sharply-defined peaks, and it becomes necessary to fit the distribution to a curve. We have not 
yet done any fitting, but once more events are generated that will be done as well. It is also 
possible to narrow the distributions by running the mass solutions through certain cuts. One 
possibility for such a cut would be to place an upper limit on the difference between the four 
particles’ masses based on information from mass-difference plots. 

Finally, note that though Figures 6 and 7 both display data with smearing, finite-width 
and off-shell effects, and all combinatorics, the distributions in Figure 7 are narrower because 
there are fewer combinatorics in the case of leptons of different types. 
 
  

 
 
 FIGURE 4: Mass distributions for the (right to left) squark, slepton, χχχχ 0

2
, χχχχ 0

1
 for the correct 

combination only and with no momentum smearing and no finite-width effects. All particles are on-

shell, and all four leptons are muons. 

Mass (GeV) 

N
u
m
b
e
r 
o
f 
E
v
en
ts
 



 12 

 
 
 
 
 
 

 
 

FIGURE 5: Mass distributions for the (right to left) squark, slepton, χχχχ 0

2
, χχχχ 0

1
 for all 256 

combinatorics/pair, but with no momentum smearing and no finite-width effects. All particles 

are on-shell, and all four leptons are muons. 

FIGURE 6: Mass distributions for the (right to left) squark, slepton, χχχχ 0

2
, χχχχ 0

1
 for all 256 

combinatorics/pair with momentum smearing and with finite-width effects. Particles may be off-

shell. All four leptons are muons. 
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4. Topology II: Upsilon Decay at SLAC 
 

In this decay, a singly-produced upsilon decays into two mirrored chains of B0� D0X � B0lυ, 
where X is some visible (SM) particle. Since the masses of the B and D mesons and the neutrino 
are experimentally known, the goal in solving this topology is to test our method of deriving 
solutions via combinations of multiple events. In this case there are two invisible final-state 
particles (the neutrinos), four intermediate particles (the B and D mesons) and four visible 
particles – two leptons and two other (X and X') identical particles (refer to Figure 8). We expect 
to accumulate the data for this decay at SLAC, a lepton collider, and therefore the initial-state 
momenta of the upsilon is fully known. With these parameters, the derivation in Section 2 shows 
that this topology can be solved if we assume that one pair of corresponding masses is equal (e.g. 
the masses of the two D mesons are equal) and combine events into pairs, which results in a 
system of 16 equations in 16 variables (the linear system contains 13 equations in 13 variables, 
and the quadratic system contains 3 equations in 3 variables), just as in the topology in Section 3. 
Note that, unlike the squark decay topology in Section 3, the upsilon decay topology has no 
discrete solution at a hadron collider for combinations of any number of events, because the 
denominator 2-3M+I is always zero (M = 2, I = 4).  

 

FIGURE 7: Mass distributions for the (right to left) squark, slepton, χχχχ 0

2
, χχχχ 0

1
 for 16 

combinatorics/pair (two of the leptons are muons and two are electrons) with momentum 

smearing and with finite-width effects. Particles may be off-shell. 
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Due to its similarity with the topology in Section 3, this topology will not be described in as 
much detail. First, the quadratic system here is identical to that in Section 3. If we assume that 
the B mesons have equal masses but make no such assumptions about the D mesons, then we 

have three linear equations from the masses of the B mesons (
222

246

2

135 bdface M=M=M=M ): 

 

( ) ( ) ( ) ( )[ ] 2

5

2

3

2

6

2

46426425315312 MMM+M=p+pp+E+EEp+ppE+EE −−⋅⋅−⋅−⋅ rrrrrr
 

( ) ( ) ( ) ( )[ ] 2

5

2

3

22

5315312 MMM+M=p+pp+E+EEp+ppE+EE ececaeca −−⋅⋅−⋅−⋅ rrrrrr
 

( ) ( ) ( ) ( )[ ] 2

5

2

3

22

5315312 MMM+M=p+pp+E+EEp+ppE+EE fdfdbfdb −−⋅⋅−⋅−⋅ rrrrrr
 

 

And two such equations from the masses of the D mesons (
22

13 acM=M  and :)
22

24 bdM=M  

 

( ) 2

3

2

31312 MM=pp+EEppEE ccaca −⋅⋅−⋅−⋅ rrrr
 

( ) 2

4

2

42422 MM=pp+EEppEE ddbdb −⋅⋅−⋅−⋅ rrrr
 

 
Finally, we have eight missing momenta conditions: 
 

  ( )xxxxxinitial,xevtIfinal,xinitial,xx p+p+p+pp=pp=p+p 6,5,4,3,2,1, −−   

  ( )yyyyyinitial,yevtIfinal,yinitial,yy p+p+p+pp=pp=p+p 6,5,4,3,2,1, −−  

( )zzzzzinitial,zevtIfinal,zinitial,zz p+p+p+pp=pp=p+p 6,5,4,3,2,1, −−  

  ( )654321 E+E+E+EE=EE=E+E initialevtIfinal,initial −−  

 

  ( )xf,xe,xd,xc,xinitial,xevtIIfinal,xinitial,xb,xa, p+p+p+pp=pp=p+p −−  

  ( )yf,ye,yd,yc,yinitial,yevtIIfinal,yinitial,yb,ya, p+p+p+pp=pp=p+p −−  

D0 υ 

X l 

X l 

υ 
D0 

B0 

B0 

FIGURE 8: Upsilon decay via two mirrored chains of B
0
���� D

0
X ���� B

0
lυ, X visible particle 
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  ( )zf,ze,zd,zc,zinitial,zevtIIfinal,zinitial,zb,za, p+p+p+pp=pp=p+p −−  

  ( )fedcinitialevtIIfinal,initialba E+E+E+EE=EE=E+E −−   

 
 With very few modifications, the same program used to solve the topology in Section 3 
can be used to generate solutions here. For the upsilon decay it will be necessary to use a 
simulation software other than Pythia. We will be using the EvtGen software

16
 for event 

simulation, and we hope to generate collider data from SLAC for testing the code and the general 
method on a known system. The beams will be collided at an energy of 10.58 GeV, which is the 

mass shell of the upsilon (4S). The upsilon decays into 
_

00 BB or −+BB  100% of the time
17

. Since 

the neutrino, D meson, and B meson masses are known, the accuracy of our solutions for these 
masses will provide an estimate for the error involved in solving for other topologies (in which 
the invisible particles' masses are truly unknown). 
 
 

5. Personal Contributions and Conclusion 
 
Most of my time on this project has been devoted to deriving the linear solutions and 
constructing the quadratic matrices for the two topologies that are the focus of this paper (with 
greater emphasis on the first) and to writing the version of the main code that generates events 
using the TPythia class, forms all 128N(N-1) combinations of momenta, solves the linear 
systems, constructs the quadratic matrices, sends these matrices to either of the external 
quadratic solvers, discards all negative-energy solutions that are returned by the solver, solves 
for the four-momenta with the energy solutions, and stores all event, combination, and solutions 
information in binary files (which can be read by another program that I wrote). The number-of-
events derivation in Section 2 is also my work. The plots shown in Section 3.3 of this paper were 
generated with the version of the main code written by Zhenyu Han, which uses the linear 
solution and quadratic matrix construction portions of the version of the code that I wrote

18
. 

 The work that is described in this paper will continue to undergo development both in 
terms of algorithmic and computational efficiency and in the larger sense of generalization to 
other topologies. The energy-scale that will be accessible at the LHC offers hope for the 
discovery of new physics phenomena and may provide evidence for supersymmetric models and 
dark matter, among other theories. In order to make as complete as possible use of the 
anticipated data from the LHC, it is essential to be able to fully analyze events with topologies 
like those described here. In the case of the SUSY decay discussed in Section 2, an accurate 
determination of the mass of the LSP would enable researchers to discover whether it is the long-
sought cold dark matter particle, the WIMP. Achieving accurate solutions of such topologies 
may therefore provide the answers to some of the most profound questions in particle physics 
and cosmology. 
 
 
 

                                                 
16 EvtGen is an event generator designed for the simulation of the physics of B decays at SLAC [12]. 

17 The −+BB decay is very similar to the 
_

00 BB decay, and so this analysis applies in the same way to that decay. 
18 The versions are currently adapted to each interface with a different solver; the version that I wrote interfaces with 

the homotopy methods solver. 
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