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Abstract:

Granular materials are characterized as a conglomeration of macroscopic particles which
experience a loss of energy upon interaction, while being large enough to avoid thermal
motion fluctuations. Despite centuries of study, their behavior is still mysterious.
Theoretical work has traditionally focused on spheres and hard ellipsoids rather than
simple polygons or polyhedra. Previous experimental research by Dr. Zieve on polygons
created from lattices of welded ball bearings had indicated a link between angle and
density in two dimensions immediately prior to an avalanche. The goal of this project was
to confirm those findings and attempt to determine what portion of the material was
responsible for the correlation. Code was written to analyze photos of a rotating frame
containing a sample granular material, making it possible to find density and angle for
regions of arbitrary size and calculate correlations from them. Correlations for various
granular shapes were most visible when taken over large regions and decreased in smaller
regions as noise became dominant with one notable exception.  

1. Introduction



The Wikipedia defines a granular material as “A conglomeration of discrete solid
macroscopic particles characterized by a loss of energy whenever the particles interact.
The constituents that compose a granular material must be large enough such that they are
to not subject to thermal motion fluctuations.” Classic examples of granular materials
include sand, grain, and sugar. Granular materials are found throughout everyday life.
Though the modern study of granular materials is hundreds of year old, very little about
their behavior is understood, despite efforts by Faraday, Coulomb, and many others.
Granular materials do not easily fit into the standard classifications of matter as solids,
liquids, or gases. Though made up of solids, granular materials can flow like liquids,
prompting some to suggest that they are in fact a state of matter in their own right.
Granular materials form the basis of many industries, having applications in
pharmaceuticals (pills and powders), in agriculture (grain, seed, fruits), and construction
(gravel, concrete, etc.).  [1]

Granular materials exhibit bizarre, counter-intuitive properties. In a tall cylinder (such as
a grain silo), the pressure on the base does not increase infinitely as height increases;
rather it reaches a maximum value and then the walls of the container must bear any
additional weight. Cubes have a maximum packing density of 1, as they can be placed
directly adjacent one another with entire faces in contact. However, on deposition, they
have a packing density of only 0.68. Irregularly shaped particles are less dense than
spheres on deposition, yet compress well under vibration; by contrast, spheres resist
compression during vibration.  [1]

Theoretical work in this area has concentrated principally on packing hard ellipsoids or
mixtures of spheres , rarely has it dealt with other shapes such as simple polygons or
polyhedra.  [2]

In order to cut the problem down to a scale that is appropriate for study, a number of
simplifications must be made. Two dimensional behavior could provide insight toward
three dimensional problems, yet is simpler to work with. In two dimensions, uniform
spheres pack into triangular lattices, the densest possible arrangement. Computer
simulations with shapes such as pentagons and heptagons have shown that they form
doubles lattices, making them impractical for the study of random close-packed behavior.
[2]

For the purpose of this study, all shapes were created out of 1/8” ball bearings, welded
into variations of triangular lattices (Figure 1).  



 
The ball bearings, hereafter referred to as balls, were placed in a circular frame containing
an irregular border. The balls were confined to a single layer with a piece of Plexiglases,
and the apparatus was rotated, causing avalanches of balls (Figures 2 and 3).

Figure 1

Figure 2



In a previous study, photos were taken of the apparatus directly before and after
successive avalanches for a variety of shapes, including small and large triangles, large
diamonds, doubles, and hexagons. IDL code had been written to calculate the density and
angle immediately prior to the avalanche for the entire area containing balls. The total
mass of balls was divided by the known mass of a single ball, giving the number of balls
contained in the apparatus. The area was found through radial integration. The density
was then found by dividing the number of balls by the area. Plots of this data revealed a
correlation between density and angle. This method had a number of shortcomings,
foremost of which was that it could only be applied to the entire area of balls, and not
smaller regions. Because of that, it could not be used to determine what portion of the
balls might be responsible for the correlation. Given that between consecutive
avalanches, the vast majority of the balls do not move (being below the level of
avalanche), it seemed that the correlation was likely caused by a thin strip of balls along
the slope; additional code was required to verify this.

2. Methodology

Study of the digitized pictures seemed to reveal that balls showed up as a 3x3 matrix, a
bright pixel surrounded by somewhat dimmer pixels. Based on this observation, code was
written to locate bright pixels and count the number of balls component pixels located
inside an arbitrary area. That total number was then divided by nine to yield the number
of total balls contained in the specified region. The area of the specified region was found
by counting the number of pixels contained within the borders of the region. Various
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versions of this code can calculate density and angle for small central regions using both
regular and irregular borders, top and bottom halves of the ball area, as well as the entire
frame. The code was tested on small and large triangles, big diamonds, hexagons, and
doubles. Figure 4 shows the entire frame outlined in purple, the top and bottom “halves”,
defined by the green line, and the strip near the top edge believed to be the principal
source of the correlation, outlined in light blue.

3. Data & Results

Trials with the earlier code had found that the correlation was highest with small
triangles, approximately 0.5. Therefore, it seemed reasonable to test the accuracy of the
new code against the old. The correlation found using the new code for an entire frame of
small triangles was 0.46579, very close to the value obtained with the older method
(Figure 5).

Figure 4



This appears to confirm the results of previous research. However, the goal of this project
was to find densities and angle for small regions. Therefore, code was written to divide
the photo horizontally, approximately halfway between the highest and lowest ball
locations. Densities were obtained for the regions above and below the line (Figures 6
and 7).
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As expected, the top and bottom “halves” each have a smaller correlation than the whole
frame, at 0.312038 and 0.267438, respectively. Given the location of the horizontal
division, it would be expected that the top “half” would have a slightly higher correlation
than the bottom “half”, as it contains somewhat more of the area believed to be
responsible for the correlation. The data appears to confirm this.

Arbitrary small regions, however, proved problematic. They showed tiny positive
correlations, at best, and negative correlations, at worst. This would seem to indicate that
noise becomes dominant for small regions. There was an exception to this unforeseen
setback, however. The big diamonds each contained one data point that, when removed,
revealed a moderate but noticeable correlation.

Region Correlation

5 to 15 0.273065

5 to 35 0.312940

5 to 50 0.346340

15 to 35 0.196939

15 to 50 0.293854

35 to 50 0.284407

Table 1

 
Table 1 shows that the strongest correlation was found for the region 5 to 50 pixels from
the upper edge of the ball region, with a correlation of 0.346340. The correlation
increases as the region depth increases, encompassing larger portions of the strip
suspected to be principally responsible for the correlation. The correlation generally
decreases the upper edge of the regions descends. It remains unclear why only the big
diamonds reveal this correlation for arbitrary small regions, and this merits further study.

4. Analysis & Conclusions

Small regions exhibit negligible correlation of angle and density with the notable
exception of the big diamond shapes. The top and bottom halves of the small triangles
also have noticeable correlation, though less than for the whole frame. The whole frame
has the strongest correlation which is similar the value calculated in earlier research.
Given that the correlation is most visible when taken over larger areas and decreases over
smaller areas, it seems likely that noise is dominating the smaller regions. This is
consistent with the big diamond trials for small regions, in which a small correlation was
found. Additional testing is required to confirm these suppositions.

5. Future Work



Minor modifications of the code would be required to find densities and angles for the
entire strip believed to be causing the correlations. The basic framework is already
written, but there was insufficient time to debug it before the end of the summer. Analysis
of this region could prove whether this is indeed the critical area for correlating density
and angle.
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