Physics 140B, Condensed Matter Physics

Instructor:	Rena Zieve	
Office:	243 Physics/Geology, 752-2510	
Lab:	230/232 Physics/Geology, 752-8049	
Office hours:	10-11:30 Monday, 11-12 Thursday	
E-mail:	zieve@physics.ucdavis.edu	
Course web page:	http://london.ucdavis.edu/~zieve/phys140/phys140.html	
Home phone:	756-3658; don't call 10PM-7AM	
[will be in my office on leb during my scheduled office bound each week. Ver		

I will be in my office or lab during my scheduled office hours each week. You are welcome to find me for brief questions at other times. E-mail is by far the best way to get in touch with me.

Reader	Ming Hong
E-mail	mhong@lifshitz.ucdavis.edu
Office hour	To be announced

Text: Joel Gersten and Frederick Smith, <u>The Physics and Chemistry of Materials</u>. In Physics 140B I am planning to cover parts of chapters 7, 11, 9, 17, 22, and 16. Topics will include semiclassical theory of electrons in a crystal; variable-range hopping, percolation, and weak localization; intrinsic vs. extrinsic semiconductors, pn diodes, and transistors; types of magnetism, hysteresis, and magnetic resonance; and superconductivity. This isn't set in stone though; if you were hoping to hear about something I didn't list, let me know and I can change things around.

Other recommended texts:

1. Ashcroft and Mermin, <u>Solid State Physics</u>—a classic book, challenging for undergraduates, almost 30 years old.

2. Charles Kittel, Introduction to Solid State Physics—another classic, currently in its 7th edition, but often annoyingly glib; older editions are better about this.

Prerequisites: Physics 140A or equivalent.

Grading

Homework 25%

Problem sets are due in class, generally on Fridays. I will pass out answer sets one lecture after the problem set is due, and up to this time you may turn in your work late for half credit. Midterm 25%

There will be one midterm, on Monday May 10. Final Exam50%

The final will be on Saturday, June 12 at 1:30 PM.